Assume a mathematical optimization problem with two positive continuous variables:
0 <= x <= 1
0 <= y <= 1000
I am seeking of an efficient way to express in form of linear constraints (possibly with the use of binary/integer variables and big M) the following nonlinear relationship, so the problem can be solved with milp solvers:
when 0 <= y < 200 then x = 0
when y = 200 then 0 <= x <= 1
when 200 < y <= 1000 then x = 1
The numbers 200 and 1000 are indicative.
Are there any direct suggestions or papers/books addressing similar problems?