Given the following np.array as an input:
data = np.array([
[["00:00", 7], ["00:01", 37], ["00:02", 3]],
[["00:00", 27], ["00:01", 137], ["00:02", 33]],
[["00:00", 14], ["00:01", 17], ["00:02", 12]],
[["00:00", 15], ["00:01", 123], ["00:02", 11]],
[["00:00", 16], ["00:01", 12], ["00:02", 92]],
[["00:00", 17], ["00:01", 23], ["00:02", 22]],
[["00:00", 18], ["00:01", 23], ["00:02", 112]],
[["00:00", 100], ["00:01", 200], ["00:02", 301]],
[["00:00", 101], ["00:01", 201], ["00:02", 302]],
[["00:00", 102], ["00:01", 203], ["00:02", 303]],
[["00:00", 104], ["00:01", 207], ["00:02", 304]]])
I will proceed as follows:
# save shape info in three separate variables
x, y, z = data.shape
# idea from https://stackoverflow.com/a/36235454/5050691
output_arr = np.column_stack((np.repeat(np.arange(x), y), data.reshape(x * y, -1)))
# create a df out of the arr
df = pd.DataFrame(output_arr)
# rename for understandability
df = df.rename(columns={0: 'index', 1: 'time', 2: 'value'})
# Change the orientation between rows and columns so that rows
# that contain time info become columns
df = df.pivot(index="index", columns="time", values="value")
df.rename_axis(None, axis=1).reset_index()
# get columns that refer to specific interval of time series
temporal_accessors = ["00:00", "00:01", "00:02"]
# extract data that will be used to carry out clustering
data_for_clustering = df[temporal_accessors].to_numpy()
# a set of exemplary params
params = {
"xi": 0.05,
"metric": "euclidean",
"min_samples": 3
}
clusterer = OPTICS(**params)
fitted = clusterer.fit(data_for_clustering)
cluster_labels = fitted.labels_
df["cluster"] = cluster_labels
# Note: density based algortihms have a notion of the "noise-cluster", which is marked with
# -1 by sklearn algorithms. That's why starting index is -1 for density based clustering,
# and 0 otherwise.
For the given data and the presented choice of params, you'll get the following clusters: [0 0 1 0 0 0 0 0 1 1 1]