When using tensorflow 2.0, I find something weird about tf.Variable? There are two cases bellow.
The first one
x1 = tf.Variable(12., name='x')
x2 = tf.Variable(12., name='x')
print(x1 is x2)
x1.assign(1.)
print(x1)
print(x2)
The output is
False
<tf.Variable 'x:0' shape=() dtype=float32, numpy=1.0>
<tf.Variable 'x:0' shape=() dtype=float32, numpy=12.0>
which means variables with the same name don't share the same memory.
The second one
x = tf.Variable(12., name='x')
print(x)
y = x.assign(5.)
print(y)
print(x is y)
x.assign(3.)
print(x)
print(y)
The output is
<tf.Variable 'x:0' shape=() dtype=float32, numpy=12.0>
<tf.Variable 'UnreadVariable' shape=() dtype=float32, numpy=5.0>
False
<tf.Variable 'x:0' shape=() dtype=float32, numpy=3.0>
<tf.Variable 'UnreadVariable' shape=() dtype=float32, numpy=3.0>
The result is unexpected, variables x
and y
with different names share the same memory, but id(x)
is not equal to id(y)
.
Therefore, the name of variable can't distinguish whether variables are identical(share the same memory). And how can I reuse variables in tensorflow 2.0, like with tf.variable_scope("scope", reuse=True) tf.get_variable(...)
in tensorflow 1.0?