In short, I am trying to run a live monitoring dashboard while calculating data in the background. Here is the code for my monitoring dashboard:
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.animation import FuncAnimation
import psutil
import collections
# function to update the data
def monitor_machine_metrics(i):
cpu_metrics.popleft()
cpu_metrics.append(psutil.cpu_percent(interval=1))
ram_metrics.popleft()
ram_metrics.append(psutil.virtual_memory().percent)
# clear axis
ax.cla()
ax1.cla()
# plot cpu usage
ax.plot(cpu_metrics)
ax.text(len(cpu_metrics)-1, cpu_metrics[-1]+2, "{}%".format(cpu_metrics[-1]))
ax.set_ylim(0,100)
# plot memory usage
ax1.plot(ram_metrics)
ax1.text(len(ram_metrics)-1, ram_metrics[-1]+2, "{}%".format(ram_metrics[-1]))
ax1.set_ylim(0,100)
legend = plt.legend(['CPU Usage', 'RAM Usage'], loc='upper left')
return legend
# start collections with zeros
cpu_metrics = collections.deque(np.zeros(10))
ram_metrics = collections.deque(np.zeros(10))
usage_fig = plt.figure()
ax = plt.subplot()
ax1 = plt.subplot()
def display_dynamic_data(figure, funct, time_interval):
ani = FuncAnimation(figure, funct, interval=time_interval)
plt.show()
For the sake of keeping this simple, let's pretend I just want to print hi while the dashboard is running.
if __name__ == '__main__':
machine_monitoring_process =
multiprocessing.Process(target=display_dynamic_data,args=(usage_fig, monitor_machine_metrics, 1000))
machine_monitoring_process.start()
print('Hi')
Since FuncAnimation runs similar to an infinite loop, I purposely designed for this sub-process to be completely decoupled. While 'hi' prints, the figure comes up but no points will be displayed. However, display_dynamic_data works just fine if we just call the function instead of instantiating it as a sub-process. Unfortunately, I need this to run in parallel, since the real code is doing computations in the background.
Is there something that I am missing here?