1

I would like to find previous four week sales at a level in Python. Say for example

ID  Category    Date    Sales
1   AA  7/02/2022   1
1   AA  31/01/2022  3
1   AA  24/01/2022  5
1   AA  10/01/2022  7
1   AA  03/01/2022  9
2   BB  7/02/2022   2
2   BB  31/01/2022  4
2   BB  24/01/2022  6
2   BB  17/01/2022  8
2   BB  10/01/2022  10

For 1 AA 7/02/2022 sum of last four weeks will be 9 (as 17/01/2022 bales is not there and must include current row date)

Mounika G
  • 11
  • 3

1 Answers1

3

You could set the date as index, groupby Category and take the sum of a 28-day rolling window of Sales:

import pandas as pd
import io

data = '''ID  Category    Date    Sales
1   AA  7/02/2022   1
1   AA  31/01/2022  3
1   AA  24/01/2022  5
1   AA  10/01/2022  7
1   AA  03/01/2022  9
2   BB  7/02/2022   2
2   BB  31/01/2022  4
2   BB  24/01/2022  6
2   BB  17/01/2022  8
2   BB  10/01/2022  10'''

df = pd.read_csv(io.StringIO(data), sep='\s+')
df['Date'] = pd.to_datetime(df['Date'], format='%d/%m/%Y')

result_df = df.set_index('Date').sort_index().groupby('Category')['Sales'].rolling("28D").sum().reset_index()

Output:

Category Date Sales
0 AA 2022-01-03 00:00:00 9
1 AA 2022-01-10 00:00:00 16
2 AA 2022-01-24 00:00:00 21
3 AA 2022-01-31 00:00:00 15
4 AA 2022-02-07 00:00:00 9
5 BB 2022-01-10 00:00:00 10
6 BB 2022-01-17 00:00:00 18
7 BB 2022-01-24 00:00:00 24
8 BB 2022-01-31 00:00:00 28
9 BB 2022-02-07 00:00:00 20
RJ Adriaansen
  • 9,131
  • 2
  • 12
  • 26
  • This helped, Thank you! Could you please tell me how I can do the above but exclude current week sales i.e., for 2 BB 07/02/2022 - sum of sales should be 28 (excluding current date and going back 28 days). – Mounika G Feb 07 '22 at 02:01