If I understand correctly your predictors are all categorical, so if you want to include them in a linear regression model, you should first bild dummy variables (coded 0-1), because otherwise the regression will mistake your data for metric. Here is an article that explains it very well: https://www.statology.org/dummy-variables-in-r/
If the dependent variable (Profit) is categorical too a logistic regression model might be the better choice.
EDIT: After example data was added
Method 1: Basic without additional packages
This method is useful and easy in case you only have few dummy variables.
Location <- c(rep("Kono",4),rep("Kailahun",4),rep("Bo",4),rep("Freetown",4))
profit <- c(100,800,900,550,4500,3000,2000,1000,10,350,150,300,800,500,1500,1250)
savings <- c(80,60,440,900,2000,5500,100,200,900,1500,2000,3000,5000,9000,400,1200)
Month <- c(rep("May",3),rep("June",4),rep("July",3),rep("August",3),rep("September",3))
data <- data.frame(Location,profit,savings,Month)
data$Location.Bo <- 0
data$Location.Bo[data$Location == "Bo"] <- 1
data$Location.Freetown <- 0
data$Location.Freetown[data$Location == "Freetown"] <- 2
data$Location.Kailahun <- 0
data$Location.Kailahun[data$Location == "Kailahun"] <- 1
data$Location.Kono <- 0
data$Location.Kono[data$Location == "Kono"] <- 1
data$Month.May <- 0
data$Month.May[data$Month == "May"] <- 1
data$Month.June <- 0
data$Month.June[data$Month == "June"] <- 2
data$Month.July <- 0
data$Month.July[data$Month == "July"] <- 1
data$Month.August <- 0
data$Month.August[data$Month == "August"] <- 1
data$Month.September <- 0
data$Month.September[data$Month == "September"] <- 1
summary(lm(profit~savings+., data=data[,c(2,3,5:13)]))
Method 2: Using the package fastDummies
install.packages("fastDummies")
library(fastDummies)
Location <- c(rep("Kono",4),rep("Kailahun",4),rep("Bo",4),rep("Freetown",4))
profit <- c(100,800,900,550,4500,3000,2000,1000,10,350,150,300,800,500,1500,1250)
savings <- c(80,60,440,900,2000,5500,100,200,900,1500,2000,3000,5000,9000,400,1200)
Month <- c(rep("May",3),rep("June",4),rep("July",3),rep("August",3),rep("September",3))
data <- data.frame(Location,profit,savings,Month)
data_new <- dummy_cols(data, select_columns = c("Location", "Month"))
summary(lm(profit~savings+., data=data_new[,c(2,3,5:13)]))
Explanation: if you add the . function to the regression model, you need to specify the respective columns with the data. I did this by just specifying the column IDs but you can also write the column names, but that is usually more work.