I'm trying to get the 'logits' out of my Keras CNN classifier. I have tried the suggested method here: link.
First I created two models to check the implementation :
create_CNN_MNIST
CNN classifier that returns the softmax probabilities.create_CNN_MNIST_logits
CNN with the same layers as in (1) with a little twist in the last layer - changed the activation function to linear to return logits.
Both models were fed with the same Train and Test data of MNIST. Then I applied softmax on the logits, I got a different output from the softmax CNN.
I couldn't find a problem in my code. Maybe you could help advise another method to extract 'logits' from the model?
the code:
def softmax(x):
"""Compute softmax values for each sets of scores in x."""
e_x = np.exp(x - np.max(x))
return e_x / e_x.sum(axis=0)
def create_CNN_MNIST_logits() :
model = Sequential()
model.add(Conv2D(32, (3, 3), activation='relu', kernel_initializer='he_uniform', input_shape=(28, 28, 1)))
model.add(MaxPooling2D((2, 2)))
model.add(Flatten())
model.add(Dense(100, activation='relu', kernel_initializer='he_uniform'))
model.add(Dense(10, activation='linear'))
# compile model
opt = SGD(learning_rate=0.01, momentum=0.9)
def my_sparse_categorical_crossentropy(y_true, y_pred):
return keras.losses.categorical_crossentropy(y_true, y_pred, from_logits=True)
model.compile(optimizer=opt, loss=my_sparse_categorical_crossentropy, metrics=['accuracy'])
return model
def create_CNN_MNIST() :
model = Sequential()
model.add(Conv2D(32, (3, 3), activation='relu', kernel_initializer='he_uniform', input_shape=(28, 28, 1)))
model.add(MaxPooling2D((2, 2)))
model.add(Flatten())
model.add(Dense(100, activation='relu', kernel_initializer='he_uniform'))
model.add(Dense(10, activation='softmax'))
# compile model
opt = SGD(learning_rate=0.01, momentum=0.9)
model.compile(optimizer=opt, loss='categorical_crossentropy', metrics=['accuracy'])
return model
# load data
X_train = np.load('./data/X_train.npy')
X_test = np.load('./data/X_test.npy')
y_train = np.load('./data/y_train.npy')
y_test = np.load('./data/y_test.npy')
#create models
model_softmax = create_CNN_MNIST()
model_logits = create_CNN_MNIST_logits()
pixels = 28
channels = 1
num_labels = 10
# Reshaping to format which CNN expects (batch, height, width, channels)
trainX_cnn = X_train.reshape(X_train.shape[0], pixels, pixels, channels).astype('float32')
testX_cnn = X_test.reshape(X_test.shape[0], pixels, pixels, channels).astype('float32')
# Normalize images from 0-255 to 0-1
trainX_cnn /= 255
testX_cnn /= 255
train_y_cnn = utils.to_categorical(y_train, num_labels)
test_y_cnn = utils.to_categorical(y_test, num_labels)
#train the models:
model_logits.fit(trainX_cnn, train_y_cnn, validation_split=0.2, epochs=10,
batch_size=32)
model_softmax.fit(trainX_cnn, train_y_cnn, validation_split=0.2, epochs=10,
batch_size=32)
On the evaluation stage, I'll do softmax on the logits to check if its the same as the regular model:
#predict
y_pred_softmax = model_softmax.predict(testX_cnn)
y_pred_logits = model_logits.predict(testX_cnn)
#apply softmax on the logits to get the same result of regular CNN
y_pred_logits_activated = softmax(y_pred_logits)
Now I get different values in both y_pred_logits_activated
and y_pred_softmax
that lead to different accuracy on the test set.