as there is not much in your question to work with, i started solving the equations using sympy
(there is no theta
so far...):
from sympy import var, Eq, solveset
# line:
# x(alpha) = x1 + alpha
# y(alpha) = y1 + m * alpha
# ellipse:
# (x - x0) ** 2 / a ** 2 + (y - y0) ** 2 / b ** 2 == 1
x0, y0 = var("x0 y0")
x, y = var("x y")
a, b = var("a b")
x1, y1 = var("x1 y1")
m = var("m")
alpha = var("alpha")
ell = Eq((x - x0) ** 2 / a ** 2 + (y - y0) ** 2 / b ** 2, 1)
ell_line = ell.subs({x: x1 + alpha, y: y1 + m * alpha})
sol = solveset(ell_line, alpha)
print(sol)
this produces the solutions
FiniteSet(a*b*sqrt(a**2*m**2 + b**2 - m**2*x0**2 + 2*m**2*x0*x1 - m**2*x1**2 + 2*m*x0*y0 - 2*m*x0*y1 - 2*m*x1*y0 + 2*m*x1*y1 - y0**2 + 2*y0*y1 - y1**2)/(a**2*m**2 + b**2) + (a**2*m*y0 - a**2*m*y1 + b**2*x0 - b**2*x1)/(a**2*m**2 + b**2),
-a*b*sqrt(a**2*m**2 + b**2 - m**2*x0**2 + 2*m**2*x0*x1 - m**2*x1**2 + 2*m*x0*y0 - 2*m*x0*y1 - 2*m*x1*y0 + 2*m*x1*y1 - y0**2 + 2*y0*y1 - y1**2)/(a**2*m**2 + b**2) + (a**2*m*y0 - a**2*m*y1 + b**2*x0 - b**2*x1)/(a**2*m**2 + b**2))
for the parameters (that i chose at random...):
print(sol.subs({a: 1, b: 2, x0: -1, y0: 3, x1: 2, y1: -3, m: -2}))
i get (for alpha
):
FiniteSet(-3 - sqrt(2)/2, -3 + sqrt(2)/2)
if the solutions are real (and not complex) there is an intersection. all you'd need to do is then calculate the distance to your reference point and choose the point you are interested in.
WARNING: none of this is really tested... this is just a first shot at what i would try...