-1

I made a simple linked list using a template, so the data can be more flexible

LinkedList.h

template<class T>
class Node{
public:
    Node<T> *next{nullptr};
    T value;
    Node(T value) : value{value}{}
};

template<class T>
class LinkedList{
private:
    int m_count;
public:
    Node<T> *head{nullptr};
    Node<T> *tail{nullptr};
    LinkedList();
public:
    void insertHead(T);
    void insertTail(T);
    int count();
    void info();

    //I didn't include all of the rest of the code

};

LinkedList.cc

template<class T>
LinkedList<T>::LinkedList(){}

template<class T>
void LinkedList<T>::insertHead(T val){
    
    Node<T> *node = new Node<T>{val};

    node->next = head;

    head = node;


    if(m_count == 0)
        tail = head;

    ++m_count;
}
template<class T>
void LinkedList<T>::insertTail(T val){
    
    if(m_count == 0){
        insertHead(val);
        return;
    }

    Node<T> *node = new Node<T>{val};

    tail->next = node;

    tail = node;

    ++m_count;
}
template<class T>
int LinkedList<T>::count(){
    return m_count;
}
template<class T>
void LinkedList<T>::info(){
   Node<T> *yosh = head;
    while(yosh != nullptr){
        std::cout<<yosh->value<<"->";
        yosh = yosh->next;
    }
    printf("nullptr");
}

by using the following data types it worked. / means or

LinkedList<int/char/double> ll;
ll.insertHead(1);
ll.insertHead(2);
ll.insertTail(3);
ll.info();//[2]->[1]->[3]->nullptr

but when using std::string

LinkedList<std::string> ll;
ll.insertHead("aziz");
ll.insertHead("tomo");
ll.insertHead("mario");
ll.info();//mario->tomo->aziz->nullptr

successful, but when I add another method, the result is

LinkedList<std::string> ll;
ll.insertHead("aziz");
ll.insertHead("tomo");
ll.insertHead("mario");
ll.insertTail("naruto");
ll.info();//Segmentation fault (core dumped)

what happens here, when I replace std::string with const char* everything is fine

LinkedList<const char*>ll;
ll.insertHead("tenmaru");
ll.insertHead("konohamaru");
ll.insertTail("ranmaru");
ll.info();//ok, no error

Vlad from Moscow
  • 301,070
  • 26
  • 186
  • 335
Sam Smith
  • 11
  • 3
  • 2
    The `LinkedList` you show here does not have an `info()` member function, segfaulting or otherwise. – Drew Dormann Feb 15 '22 at 16:34
  • 2
    Note [this](https://stackoverflow.com/questions/495021/why-can-templates-only-be-implemented-in-the-header-file) please. – πάντα ῥεῖ Feb 15 '22 at 16:34
  • I believe the bug is in your info() function. Although your class currently violates the rule of 3. – drescherjm Feb 15 '22 at 16:38
  • my info() function template void LinkedList::info(){ Node *yosh = head; while(yosh != nullptr){ std::cout<value<<"->"; yosh = yosh->next; } printf("nullptr"); } – Sam Smith Feb 15 '22 at 16:40
  • Now I see it @vlad is correct. You forgot to initialize `m_count` so `if(m_count == 0){` would be accessing a garbage value that is possibly not 0 causing the tail to not be set to the head in `insertHead()` and causing a similar problem in `insertTail()` – drescherjm Feb 15 '22 at 16:44
  • @SamSmith -- `int main() { LinkedList l; std::cout << l.count(); }` -- Even that small program, assuming that `count` returns the number of items, is flawed. The moral of this whole story is that you should initialize all of your member variables to something sensible, and not just have an empty default constructor. – PaulMcKenzie Feb 15 '22 at 16:50
  • @PaulMcKenzie, the problem is i don't initialize m_count, not during object creation, btw shangkyou – Sam Smith Feb 15 '22 at 16:57
  • You initialized head and tail. You can do the same `int m_count{};` or do it in your constructor for LinkedList – drescherjm Feb 15 '22 at 17:07
  • I’m voting to close this question because an accurate answer has been provided. – Darek Feb 16 '22 at 00:38

2 Answers2

2

It seems the problem is that not all data members of the class LinkedList are initialized inside the class definition

template<class T>
class LinkedList{
private:
    int m_count;
public:
    Node<T> *head{nullptr};
    Node<T> *tail{nullptr};
    LinkedList();
public:
    void insertHead(T);
    void insertTail(T);
    int count();

    //I didn't include all of the rest of the code

};

or inside the constructor

template<class T>
LinkedList<T>::LinkedList(){}

So the data member int m_count; stays uninitialized.

As a result the both functions insertHead and insertTail can invoke undefined behavior due to their if statements

if(m_count == 0)
    tail = head;

and

if(m_count == 0){
    insertHead(val);
    return;
}

You need to initialize the data member m_count for created objects of the type LinkedList.

Vlad from Moscow
  • 301,070
  • 26
  • 186
  • 335
  • guys, thanks a lot, I didn't think that just not initializing would cause an error, thanks – Sam Smith Feb 15 '22 at 16:52
  • LinkedList::LinkedList() : m_count{0}{} – Sam Smith Feb 15 '22 at 16:53
  • @SamSmith C++ follows a "You don't pay for what you don't use" ideology so as a general rule of thumb the default assumption should be that C++ does nothing that will consume time or storage when run that you didn't explicitly ask for. When C++ does throw you a bone it's probably because the cost was seen as worth it to reduce software defects and it will be well-documented. – user4581301 Feb 15 '22 at 19:19
0

The question has been answered already by Vlad from Moscow. He is a true beginner with a rep of 254k :-) and has always good answers.

Additionally to your already very good code, I would like to show you 2 additional implementations to maybe give you some additionaly ideas.

Especially helpful is the sentinel approacht in the double linked list.

Please see:

Singly Linked List:

#include <iostream>
#include <iterator>
#include <initializer_list>
#include <algorithm>

// Very simple implementation of a forward list
template <class T>
class SinglyLinkedList {

    // The node
    struct Node {
        T data{};     // Data. Would normally be a templated argument
        Node* next{};   // And the pointer to the next node

        Node(const T& i, Node* n = nullptr) : data(i), next(n) {}; // Simple constructor to set a value and next pointer
    };

    Node* head{};       // This is the start of the list
    // It would be advisable to have a tail pointer. We use the more inefficient approach here
    Node* getLast() const { Node* n{ head }; while (n and n->next) n = n->next; return n; }

public:
    // Constructor / Destructor --------------------------------------------------------------------------------------------------------
    ~SinglyLinkedList() { clear(); }

    // Default constuctor
    SinglyLinkedList() {}   // Default

    // From an initialization list
    SinglyLinkedList(const std::initializer_list<T>& il) { clear();  for (const T& i : il) push_back(i); } // From initializer list

    // Copy constructor
    SinglyLinkedList(const SinglyLinkedList& other) { clear(); for (const T& i : other) push_back(i); }

    // Move constructor. Will steal the elements from the other 
    SinglyLinkedList(SinglyLinkedList&& other) noexcept { head = other.head; other.head = nullptr; }

    // Assignment operator
    SinglyLinkedList& operator = (const SinglyLinkedList& other) { clear(); for (const T& i : other) push_back(i); }

    // Move assignment operator 
    SinglyLinkedList& operator = (SinglyLinkedList&& other) { head = other.head; other.head = nullptr; }

    // Housekeeping --------------------------------------------------------------------------------------------------------------
    void clear() { Node* tmp{ head }; while (tmp) { Node* toDelete{ tmp }; tmp = tmp->next; delete toDelete; } head = nullptr; }
    int empty() const { return head == nullptr; }
    int size() const { int k{}; Node* n{ head }; while (n) { ++k; n = n->next; } return k; }

    // Modify content --------------------------------------------------------------------------------------------------------------
    void push_front(const T& i) { Node* n = new Node(i); n->next = head; head = n; };
    void push_back(const T& i) { Node* n = new Node(i); Node* l = getLast(); if (l) l->next = n; else head = n; }
    void pop_front() { if (head) { Node* tmp = head->next; delete head; head = tmp; } }
    void pop_back() { // This is a little bit more difficult in a singly linked list
        if (head) {
            Node* n{ head }, * previous{};
            while (n and n->next) {
                previous = n;
                n = n->next;
            }
            delete n;
            if (previous)
                previous->next = nullptr;
            else
                head->next = nullptr;
        }
    }

    // Access elements --------------------------------------------------------------------------------
    T& front() const { return head ? head->data : 0; };
    T back() const { Node* n = getLast(); return n ? n->data : 0; }

    // Add iterator properties to class ---------------------------------------------------------------
    struct iterator {                           // Local class for iterator
        Node* iter{};                           // Iterator is basically a pointer to the node
        Node* head{};

        // Define alias names necessary for the iterator functionality
        using iterator_category = std::bidirectional_iterator_tag;
        using difference_type = std::ptrdiff_t;
        using value_type = T;
        using pointer = T*;
        using reference = T&;

        // Constructor
        iterator() {}
        iterator(Node* n, Node* h) : iter(n), head(h) {}

        // Dereferencing
        reference operator *() const { return iter->data; }
        pointer operator ->() const { return &iter->data; }

        // Aithmetic operations
        iterator& operator ++() { if (iter) iter = iter->next; return *this; }
        iterator operator ++(int) { iterator temp{ *this }; ++* this; return temp; }

        // Clumsy subtratcion
        iterator& operator --() { Node* tmp = head; while (tmp and tmp->next != this->iter) tmp = tmp->next; iter = tmp;  return *this; }
        iterator operator --(int) { iterator temp{ *this }; --* this; return temp; }

        iterator operator +(const difference_type& n) const {
            iterator temp{ *this };  difference_type k{ n }; if (k > 0) while (k--)++temp; else while (k++)--temp; return temp;
        }
        iterator operator +=(const difference_type& n) {
            difference_type k{ n }; if (k > 0) while (k--)++* this; else while (k++)--* this; return *this;
        };
        iterator operator -(const difference_type& n) const {
            iterator temp{ *this };  difference_type k{ n }; if (k > 0) while (k--)--temp; else while (k++)++temp; return temp;
        }
        iterator operator -=(const difference_type& n) {
            difference_type k{ n }; if (k > 0) while (k--)--* this; else while (k++)++* this; return *this;
        };

        // Comparison
        bool operator != (const iterator& other) const { return iter != other.iter; }
        bool operator == (const iterator& other) const { return iter == other.iter; }
        bool operator < (const iterator& other) const { return iter < other.iter; }
        bool operator > (const iterator& other) const { return iter > other.iter; }
        bool operator <= (const iterator& other) const { return iter <= other.iter; }
        bool operator >= (const iterator& other) const { return iter >= other.iter; }

        // Difference. Also complicated, because no random access
        difference_type operator-(const iterator& other) const {
            difference_type result{};
            Node* n{ iter };
            while (n and n != other.iter) {
                ++result;
                n = n->next;
            }
            return result;
        }
    };

    // Begin and end function to initialize an iterator
    iterator begin() const { return iterator(head, head); }
    iterator end() const { return iterator(nullptr, head); }

    // Functions typcical for forward lists ----------------------------------------------------------------------
    // Easy, becuase we can operate form the current iterator and do not need the "previous" element
    iterator insertAfter(iterator& pos, const T& i) {
        iterator result(nullptr, head);
        if (pos.iter and pos.iter->next) {
            Node* n = new Node(i, pos.iter->next);
            pos.iter->next = n;
            result.iter = n;
        }
        return result;
    }
    iterator eraseAfter(iterator& pos) {
        iterator result(nullptr, head);
        if (pos.iter and pos.iter->next) {
            Node* tmp = pos.iter->next->next;
            delete pos.iter->next;
            pos.iter->next = tmp;
            result.iter = pos.iter->next;
        }
        return result;
    }
};
// Test/Driver Code
int main() {

    // Example for initilizer list
    SinglyLinkedList<int> sllbase{ 5,6,7,8,9,10,11,12,13,14,15 };
    // Show move constructor
    SinglyLinkedList<int> sll(std::move(sllbase));

    // Add some values in the front
    sll.push_front(4);
    sll.push_front(3);
    sll.push_front(2);
    sll.push_front(1);

    // Delete 1st element (Number 1)
    sll.pop_front();
    // Delete last element
    sll.pop_back();

    // Use a std::algorithm on our custom linked list. Works because we have an interator
    SinglyLinkedList<int>::iterator iter = std::find(sll.begin(), sll.end(), 8);
    ++iter;
    --iter;

    // Now add an element after 8
    iter = sll.insertAfter(iter, 88);
    // And delete the 9
    iter = sll.eraseAfter(iter);

    // Use range based for loop. Works because, we have iterators
    for (int i : sll)
        std::cout << i << ' ';


    // Reverse Output
    std::cout << "\n\n";
    std::reverse_iterator<SinglyLinkedList<int>::iterator> riter = std::make_reverse_iterator(sll.end());
    std::reverse_iterator<SinglyLinkedList<int>::iterator> riterEnd = std::make_reverse_iterator(sll.begin());

    for (; riter != riterEnd; ++riter)
        std::cout << *riter << ' ';
    std::cout << "\n\n";

    return 0;
}

Double linked list. Similar to std::list

#include <iostream>
#include <iterator>
#include <vector>
#include <type_traits>
#include <initializer_list>
#include <algorithm>
#include <list>

// ------------------------------------------------------------------------------------------------
// This would be in a header file -----------------------------------------------------------------

// Type trait helper to identify iterators --------------------------------------------------------
template<typename T, typename = void>
struct is_iterator { static constexpr bool value = false; };
template<typename T>
struct is_iterator<T, typename std::enable_if<!std::is_same<typename std::iterator_traits<T>::value_type, void>::value>::type> {
    static constexpr bool value = true;
};

// The List class ---------------------------------------------------------------------------------
template <typename T>
class List {
    // Sub class for a Node -----------
    struct Node {
        Node* next{};
        Node* previous{};
        T data{};
        Node(Node* const n, Node* const p, const T& d) : next(n), previous(p), data(d) {}
        Node(Node* const n, Node* const p) : next(n), previous(p) {}
        Node() {}
    };

    // Private list data and functions --------
    size_t numberOfElements{};
    Node* head{};
    void init() { head = new Node(); head->next = head; head->previous = head; numberOfElements = 0; }

public:
    struct iterator;    // Forward declaration

    // Constructor --------------------
    List() { init(); }
    explicit List(const size_t count, const T& value) { init(); insert(begin(), count, value); };
    explicit List(const size_t count) { init(); insert(begin(), count); }
    template <typename Iter>
    List(const Iter& first, const Iter& last) { init(); insert(begin(), first, last); }
    List(const List& other) { init(), insert(begin(), other.begin(), other.end()); };
    List(List&& other) : head(other.head), numberOfElements(other.numberOfElements) { other.init(); }
    List(const std::initializer_list<T>& il) { init(); insert(begin(), il.begin(), il.end()); }
    template <int N> List(const T(&other)[N]) { init(); insert(begin(), std::begin(other), std::end(other)); }
    template <int N> List(T(&other)[N]) { init(); insert(begin(), std::begin(other), std::end(other)); }


    // Assignment ---------------------
    List& operator =(const List& other) { clear(); insert(begin(), other.begin(), other.end()); return *this; }
    List& operator =(List&& other) { clear(); head = other.head; numberOfElements = other.numberOfElements; other.init(); return *this; }
    List& operator =(const std::initializer_list<T>& il) { clear(); insert(begin(), il.begin(), il.end()); return *this; }
    template <int N> List& operator =(const T(&other)[N]) { clear(); insert(begin(), std::begin(other), std::end(other)); return *this; }
    template <int N> List& operator =(T(&other)[N]) { clear(); insert(begin(), std::begin(other), std::end(other)); return *this; }

    void assign(const size_t count, const T& value) { clear(); insert(begin(), count, value); }
    void assign(const std::initializer_list<T>& il) { clear(); insert(begin(), il.begin(), il.end()); }
    template <typename Iter> void assign(const Iter& first, const Iter& last) { clear(); insert(begin(), first, last); }
    template <int N> void assign(const T(&other)[N]) { clear(); insert(begin(), std::begin(other), std::end(other)); return *this; }
    template <int N> void assign(T(&other)[N]) { clear(); insert(begin(), std::begin(other), std::end(other)); return *this; }

    // Destructor ---------------------
    ~List() { clear(); }

    // Element Access -----------------
    T& front() { return *begin(); }
    T& back() { return *(--end()); }

    // Iterators ----------------------
    iterator begin() const { return iterator(head->next, head); }
    iterator end() const { return iterator(head, head); }

    // Capacity -----------------------
    size_t size() const { return numberOfElements; }
    bool empty() { return size() == 0; }

    // Modifiers ----------------------
    void clear();

    iterator insert(const iterator& insertBeforePosition, const T& value);
    iterator insert(const iterator& insertBeforePosition);
    template <class Iter, std::enable_if_t<is_iterator<Iter>::value, bool> = true>
    iterator insert(const iterator& insertBeforePosition, const Iter& first, const Iter& last);
    iterator insert(const iterator& insertBeforePosition, const size_t& count, const T& value);
    iterator insert(const iterator& insertBeforePosition, const std::initializer_list<T>& il);

    iterator erase(const iterator& posToDelete);
    iterator erase(const iterator& first, const iterator& last);


    void push_back(const T& d) { insert(end(), d); }
    void pop_back() { erase(--end()); };

    void push_front(const T& d) { insert(begin(), d); }
    void pop_front() { erase(begin()); };

    void resize(size_t count);
    void resize(size_t count, const T& value);

    void swap(List& other) { std::swap(head, other.head); std::swap(numberOfElements, other.numberOfElements); }

    // Operations --------------------
    void reverse();

    // Non standard inefficient functions --------------------------
    T& operator[](const size_t index) const { return begin()[index]; }

    // ------------------------------------------------------------------------
    // Define iterator capability ---------------------------------------------
    struct iterator {

        // Definitions ----------------
        using iterator_category = std::bidirectional_iterator_tag;
        using difference_type = std::ptrdiff_t;
        using value_type = T;
        using pointer = T*;
        using reference = T&;

        // Data -----------------------
        Node* iter{};
        Node* head{};

        // Constructor ----------------
        iterator(Node* const node, Node* const h) : iter(node), head(h) {};
        iterator() {};

        // Dereferencing --------------
        reference operator*() const { return iter->data; }
        reference operator->() const { return &**this; }

        // Arithmetic operations ------
        iterator operator++() { iter = iter->next; return *this; }
        iterator operator++(int) { iterator tmp = *this; ++* this; return tmp; }
        iterator operator--() { iter = iter->previous; return *this; }
        iterator operator--(int) { iterator tmp = *this; --* this; return tmp; }

        iterator operator +(const difference_type& n) const {
            iterator temp{ *this };  difference_type k{ n }; if (k > 0) while (k--)++temp; else while (k++)--temp; return temp;
        }
        iterator operator +=(const difference_type& n) {
            difference_type k{ n }; if (k > 0) while (k--)++* this; else while (k++)--* this; return *this;
        };
        iterator operator -(const difference_type& n) const {
            iterator temp{ *this };  difference_type k{ n }; if (k > 0) while (k--)--temp; else while (k++)++temp; return temp;
        }
        iterator operator -=(const difference_type& n) {
            difference_type k{ n }; if (k > 0) while (k--)--* this; else while (k++)++* this; return *this;
        };
        // Comparison ----------------- (typical space ship implementation)
        bool operator ==(const iterator& other) const { return iter == other.iter; };
        bool operator !=(const iterator& other) const { return iter != other.iter; };
        bool operator < (const iterator& other) const { return other.iter - iter < 0; };
        bool operator <= (const iterator& other) const { return other.iter - iter <= 0; };
        bool operator > (const iterator& other) const { return other.iter - iter > 0; };
        bool operator >= (const iterator& other) const { return other.iter - iter >= 0; };

        // Special non standard functions -----------------
        difference_type operator-(const iterator& other) const;
        reference operator[] (const size_t index);
    };
};


// ------------------------------------------------------------------------------------------------
// Implementation of list functions. This would normally go into a TCC file -----------------------

// List class functions ---------------
template <typename T>
void List<T>::clear() {

    for (Node* nextNode{}, * currentNode(head->next); currentNode != head; currentNode = nextNode) {
        nextNode = currentNode->next;
        delete currentNode;
    }
    init();
}
template <typename T>
typename List<T>::iterator List<T>::insert(const List<T>::iterator& insertBeforePosition, const T& value)
{
    Node* nodeInsertBeforePosition = insertBeforePosition.iter;
    Node* newNode = new Node(nodeInsertBeforePosition, nodeInsertBeforePosition->previous, value);
    nodeInsertBeforePosition->previous = newNode;
    (newNode->previous)->next = newNode;
    ++numberOfElements;
    return iterator(newNode, head);
}
template <typename T>
typename List<T>::iterator List<T>::insert(const List<T>::iterator& insertBeforePosition)
{
    Node* nodeInsertBeforePosition = insertBeforePosition.iter;
    Node* newNode = new Node(nodeInsertBeforePosition, nodeInsertBeforePosition->previous);
    nodeInsertBeforePosition->previous = newNode;
    (newNode->previous)->next = newNode;
    ++numberOfElements;
    return iterator(newNode, head);
}

template <typename T>
template <class Iter, std::enable_if_t<is_iterator<Iter>::value, bool>>
typename List<T>::iterator List<T>::insert(const List<T>::iterator& insertBeforePosition, const Iter& first, const Iter& last) {
    iterator result(insertBeforePosition.iter, head);
    if (first != last) {
        result = insert(insertBeforePosition, *first);
        Iter i(first);
        for (++i; i != last; ++i)
            insert(insertBeforePosition, *i);
    }
    return result;
}

template <typename T>
typename List<T>::iterator List<T>::insert(const List<T>::iterator& insertBeforePosition, const size_t& count, const T& value) {

    iterator result(insertBeforePosition.iter, head);
    if (count != 0u) {
        result = insert(insertBeforePosition, value);
        for (size_t i{ 1u }; i < count; ++i)
            insert(insertBeforePosition, value);
    }
    return result;
}

template <typename T>
typename List<T>::iterator List<T>::insert(const List<T>::iterator& insertBeforePosition, const std::initializer_list<T>& il) {
    return insert(insertBeforePosition, il.begin(), il.end());
}

template <typename T>
typename List<T>::iterator List<T>::erase(const List<T>::iterator& posToDelete) {

    iterator result = posToDelete;
    ++result;

    Node* nodeToDelete = posToDelete.iter;

    if (nodeToDelete != head) {

        nodeToDelete->previous->next = nodeToDelete->next;
        nodeToDelete->next->previous = nodeToDelete->previous;

        delete nodeToDelete;
        --numberOfElements;
    }
    return result;
}

template <typename T>
typename List<T>::iterator List<T>::erase(const List<T>::iterator& first, const List<T>::iterator& last) {
    iterator result{ end() };
    if (first == begin() && last == end())
        clear();
    else {
        while (first != last)
            first = erase(first);
        result = last;
    }
    return result;
}

template <typename T>
void List<T>::resize(size_t count) {
    if (numberOfElements < count)
        for (size_t i{ numberOfElements }; i < count; ++i)
            insert(end());
    else
        while (count--)
            pop_back();
}
template <typename T>
void List<T>::resize(size_t count, const T& value) {
    if (numberOfElements < count)
        for (size_t i{ numberOfElements }; i < count; ++i)
            insert(end(), value);
    else
        while (count--)
            pop_back();
}
template <typename T>
void List<T>::reverse() {
    const Node* oldHead = head;

    for (Node* nptr = head; ; nptr = nptr->previous) {
        std::swap(nptr->next, nptr->previous);
        if (nptr->previous == oldHead) // Previous was the original next
            break;
    }
}

// ------------------------------------
// Iterator functions -----------------
template <typename T>
typename List<T>::iterator::difference_type List<T>::iterator::operator-(const iterator& other) const {

    difference_type result{};
    Node* nptr = head;

    int indexThis{ -1 }, indexOther{ -1 }, index{};

    do {
        nptr = nptr->next;
        if (nptr == iter)
            indexThis = index;
        if (nptr == other.iter)
            indexOther = index;
        ++index;
    } while (nptr != head);

    if (indexThis >= 0 and indexOther >= 0)
        result = indexThis - indexOther;
    return result;
}
template <typename T>
typename List<T>::iterator::reference List<T>::iterator::operator[] (const size_t index) {
    Node* nptr = head->next;
    for (size_t i{}; i < index and nptr != head; ++i, nptr = nptr->next)
        ;
    return nptr->data;
}

// ------------------------------------------------------------------------------------------------
// This would be in a cpp file --------------------------------------------------------------------
int main() {


    List<int> list3{ 10,20 };
    List<int>::iterator l3 = list3.end();
    for (int k = 0; k < 10; ++k) {
        std::cout << *l3 << ' ';
        --l3;
    }
    std::cout << '\n';

    // Custom list
    List<int> list2{ 1, 2, 3, 4, 5 };

    for (int i : list2)
        std::cout << i << ' '; std::cout << '\n';

    // Delta works
    std::cout << list2.begin() - list2.end() << '\n';
    std::cout << list2.end() - list2.begin() << '\n';

    // Hopp Count works
    List<int>::iterator i = list2.end();
    while (i-- != list2.begin())
        std::cout << *i << ' '; std::cout << '\n';
}
A M
  • 14,694
  • 5
  • 19
  • 44