0

I receive my data as:

          ID  Congressional District  Call Date   Disposition     Q1\r
0      32539                       9 2020-09-28      Answered  Refused
1     162619                       7 2020-10-02    Bad Number        
2      77120                      12 2020-09-29  Left Message        
3     137498                      12 2020-10-01    Bad Number        
4     150741                       6 2020-10-02  Left Message        
...      ...                     ...        ...           ...      ...
4995   46976                      12 2020-09-28  Left Message        
4996   18607                       1 2020-09-30  Wrong Number        
4997   48573                      13 2020-09-28  Left Message        
4998  130080                       8 2020-10-01   Do Not Call        
4999  160957                       7 2020-10-02  Left Message     <NA>

I want to make a new DataFrame as this:

              Total      2020-09-28 2020-09-29 2020-09-30 2020-10-01 2020-10-02
Answered      150        30         30         30         30         30
Do Not Call   60         13         13         13         11         10
Left Message  60         13         13         13         11         10
Bad Number    60         13         13         13         11         10
Wrong Number  60         13         13         13         11         10

I am currently receiving this..

              Total          1          2          3          4  ...             6             7              8              9             10
Disposition                                                      ...                                                                         
Answered        712  10.729730  11.205298  11.580000   3.533898  ...  40055.121622  71594.980132   97800.053333  116451.067797  148630.834483
Bad Number      883  11.532567  11.428571  11.926174  11.465753  ...  43221.344828  72720.093168   98930.865772  135084.890411  152487.602151
Do Not Call       8   3.333333  11.000000  13.000000   6.666667  ...  13382.000000  71322.000000  105554.000000   96946.000000            NaN
Left Message   2816   8.413842  10.499106  11.388889   4.002000  ...  32044.853107  68353.930233   95598.186508  121668.028000  152734.754128
Wrong Number    581   1.062500   1.171642   1.064103   0.991803  ...   4153.034722  13523.194030   18771.935897   23589.516393   27375.600000

Here is my code, where df is my dataframe.

print(df)
rc = df.groupby(by=['Disposition']).size()
rc1 = pd.pivot_table(df,index=['Disposition'],columns="Call Date")
rc = pd.concat([rc,rc1],ignore_index=True,axis=1)
result = pd.concat([rc], axis=0)
result.rename(columns={0:'Total'},inplace=True)
print(result)

I've tried playing around with a couple different things/answers including merge, but can't seem to find the solution. How can i combine two columns in the dataframe to make a new one?

0 Answers0