I am going to use a platform that is easy to see what is going on. The compilers and platforms work the same way independent of architecture, operating system, etc. There are exceptions of course...
In main am going to call this function:
test();
Which is:
extern void hexstring ( unsigned int );
void test ( void )
{
unsigned int x[3];
hexstring(x[0]);
hexstring(x[1]);
hexstring(x[2]);
}
hexstring is just a printf("%008X\n",x)
.
Build it (not using x86, using something that is overall easier to read for this demonstration)
test.c: In function ‘test’:
test.c:7:2: warning: ‘x[0]’ is used uninitialized in this function [-Wuninitialized]
7 | hexstring(x[0]);
| ^~~~~~~~~~~~~~~
test.c:8:2: warning: ‘x[1]’ is used uninitialized in this function [-Wuninitialized]
8 | hexstring(x[1]);
| ^~~~~~~~~~~~~~~
test.c:9:2: warning: ‘x[2]’ is used uninitialized in this function [-Wuninitialized]
9 | hexstring(x[2]);
| ^~~~~~~~~~~~~~~
The disassembly of the compiler output shows
00010134 <test>:
10134: e52de004 push {lr} ; (str lr, [sp, #-4]!)
10138: e24dd014 sub sp, sp, #20
1013c: e59d0004 ldr r0, [sp, #4]
10140: ebffffdc bl 100b8 <hexstring>
10144: e59d0008 ldr r0, [sp, #8]
10148: ebffffda bl 100b8 <hexstring>
1014c: e59d000c ldr r0, [sp, #12]
10150: e28dd014 add sp, sp, #20
10154: e49de004 pop {lr} ; (ldr lr, [sp], #4)
10158: eaffffd6 b 100b8 <hexstring>
We can see that the stack area is allocated:
10138: e24dd014 sub sp, sp, #20
But then we go right into reading and printing:
1013c: e59d0004 ldr r0, [sp, #4]
10140: ebffffdc bl 100b8 <hexstring>
So whatever was on the stack. Stack is just memory with a special hardware pointer.
And we can see the other two items in the array are also read (load) and printed.
So whatever was in that memory at this time is what gets printed. Now the environment I am in likely zeroed the memory (including stack) before we got there:
00000000
00000000
00000000
Now I am optimizing this code to make it easier to read, which adds a few challenges.
So what if we did this:
test2();
test();
In main and:
void test2 ( void )
{
unsigned int y[3];
y[0]=1;
y[1]=2;
y[2]=3;
}
test2.c: In function ‘test2’:
test2.c:5:15: warning: variable ‘y’ set but not used [-Wunused-but-set-variable]
5 | unsigned int y[3];
|
and we get:
00000000
00000000
00000000
but we can see why:
00010124 <test>:
10124: e52de004 push {lr} ; (str lr, [sp, #-4]!)
10128: e24dd014 sub sp, sp, #20
1012c: e59d0004 ldr r0, [sp, #4]
10130: ebffffe0 bl 100b8 <hexstring>
10134: e59d0008 ldr r0, [sp, #8]
10138: ebffffde bl 100b8 <hexstring>
1013c: e59d000c ldr r0, [sp, #12]
10140: e28dd014 add sp, sp, #20
10144: e49de004 pop {lr} ; (ldr lr, [sp], #4)
10148: eaffffda b 100b8 <hexstring>
0001014c <test2>:
1014c: e12fff1e bx lr
test didn't change but test2 is dead code as one would expect when optimized, so it did not actually touch the stack. But what if we:
test2.c
void test3 ( unsigned int * );
void test2 ( void )
{
unsigned int y[3];
y[0]=1;
y[1]=2;
y[2]=3;
test3(y);
}
test3.c
void test3 ( unsigned int *x )
{
}
Now
0001014c <test2>:
1014c: e3a01001 mov r1, #1
10150: e3a02002 mov r2, #2
10154: e3a03003 mov r3, #3
10158: e52de004 push {lr} ; (str lr, [sp, #-4]!)
1015c: e24dd014 sub sp, sp, #20
10160: e28d0004 add r0, sp, #4
10164: e98d000e stmib sp, {r1, r2, r3}
10168: eb000001 bl 10174 <test3>
1016c: e28dd014 add sp, sp, #20
10170: e49df004 pop {pc} ; (ldr pc, [sp], #4)
00010174 <test3>:
10174: e12fff1e bx lr
test2 is actually putting stuff on the stack. Now the calling conventions generally require that the stack pointer is back where it started when you were called, which means function a might move the pointer and read/write some data in that space, call function b move the pointer, read/write some data in that space, and so on. Then when each function returns it does not make sense usually to clean up, you just move the pointer back and return whatever data you wrote to that memory remains.
So if test 2 writes a few things to the stack memory space and then returns then another function is called at the same level as test2. Then the stack pointer is at the same address when test() is called as when test2() was called, in this example. So what happens?
00000001
00000002
00000003
We have managed to control what test() is printing out. Not magic.
Now rewind back to the 1960s and then work forward to the present, particularly 1980s and later.
Memory was not always cleaned up before your program ran. As some folks here are implying if you were doing banking on a spreadsheet then you closed that program and opened this program...back in the day...you would almost expect to see some data from that spreadsheet program, maybe the binary maybe the data, maybe something else, due to the nature of the operating systems use of memory it may be a fragment of the last program you ran, and a fragment of the one before that, and a fragment of a program still running that just did a free(), and so on.
Naturally, once we started to get connected to each other and hackers wanted to take over and send themselves your info or do other bad things, you can see how trivial it would be to write a program to look for passwords or bank accounts or whatever.
So not only do we have protections today to prevent one program sniffing around in another programs space, we generally assume that, today, before our program gets some memory that was used by some other program, it is wiped.
But if you disassemble even a simple hello world printf program you will see that there is a fair amount of bootstrap code that happens before main() is called. As far as the operating system is concerned, all of that code is part of our one program so even if (let's assume) memory were zeroed or cleaned before the OS loads and launches our program. Before main, within our program, we are using the stack memory to do stuff, leaving behind values, that a function like test() will see.
You may find that each time you run the same binary, one compile many runs, that the "random" data is the same. Now you may find that if you add some other shared library call or something to the overall program, then maybe, maybe, that shared library stuff causes extra code pre-main to happen to try to be able to call the shared code, or maybe as the program runs it takes different paths now because of a side effect of a change to the overall binary and now the random values are different but consistent.
There are explanations why the values could be different each time from the same binary as well.
There is no ghost in the machine though. Stack is just memory, not uncommon when a computer boots to wipe that memory once if for no other reason than to set the ecc bits. After that that memory gets reused and reused and reused and reused. And depending on the overall architecture of the operating system. How the compiler builds your application and shared libraries. And other factors. What happens to be in memory where the stack pointer is pointing when your program runs and you read before you write (as a rule never read before you write, and good that compilers are now throwing warnings) is not necessarily random and the specific list of events that happened to get to that point, were not just random but controlled, are not values that you as the programmer may have predicted. Particularly if you do this at the main() level as you have. But be it main or seventeen levels of nested function calls, it is still just some memory that may or may not contain some stuff from before you got there. Even if the bootloader zeros memory, that is still a written zero that was left behind from some other program that came before you.
There are no doubt compilers that have features that relate to the stack that may do more work like zero at the end of the call or zero up front or whatever for security or some other reason someone thought of.
I would assume today that when an operating system like Windows or Linux or macOS runs your program it is not giving you access to some stale memory values from some other program that came before (spreadsheet with my banking information, email, passwords, etc). But you can trivially write a program to try (just malloc() and print or do the same thing you did but bigger to look at the stack). I also assume that program A does not have a way to get into program B's memory that is running concurrently. At least not at the application level. Without hacking (malloc() and print is not hacking in my use of the term).