I would like to create a NumPy function that computes the Jacobian of a function at a certain point - with the Jacobian hard coded into the function.
Say I have a vector containing two arbitrary scalars X = np.array([[x],[y]])
, and a function f(X) = np.array([[2xy],[3xy]])
.
This function has Jacobian J = np.array([[2y, 2x],[3y, 3x]])
How can I write a function that takes in the array X and returns the Jacobian? Of course, I could do this using array indices (e.g. x = X[0,0]
), but am wondering if there is a way to do this directly without accessing the individual elements of X.
I am looking for something that works like this:
def foo(x,y):
return np.array([[2*y, 2*x],[3*y, 3*x]])
X = np.array([[3],[7]])
J = foo(X)
Given that this is possible on 1-dimensional arrays, e.g. the following works:
def foo(x):
return np.array([x,x,x])
X = np.array([1,2,3,4])
J = foo(X)