Part 1 (See Part 2 below)
I managed to speedup your division code 5x times on my old laptop (and even 7.5x times on GodBolt servers) using Barrett Reduction, this is a technique that allows to replace single division by several multiplications and additions. Implemented whole code from sctracth just today.
If you want you can jump directly to code location at the end of my post, without reading long description, as code is fully runnable without any knowledge or dependency.
Code below is only for Intel x64, because I used Intel only instructions and only 64-bit variants of them. Sure it can be re-written for x32 too and for other processors, because Barrett algorithm is generic.
To explain whole Barrett Reduction in short pseudo-code I'll write it in Python as it is simplest language suitable for understandable pseudo-code:
# https://www.nayuki.io/page/barrett-reduction-algorithm
def BarrettR(n, s):
return (1 << s) // n
def BarrettDivMod(x, n, r, s):
q = (x * r) >> s
t = x - q * n
return (q, t) if t < n else (q + 1, t - n)
Basically in pseudo code above BarrettR()
is done only single time for same divisor (you use same single-word divisor for whole big integer division). BarrettDivMod()
is used each time when you want to make division or modulus operations, basically given input x
and divisor n
it returns tuple (x / n, x % n)
, nothing else, but does it faster than regular division instruction.
In below C++ code I implement same two functions of Barrett, but do some C++ specific optimizations to make it even more faster. Optimizations are possible due to fact that divisor n
is always 64-bit, x
is 128-bit but higher half is always smaller than n
(last assumption happens because higher half in your big integer division is always a remainder modulus n
).
Barrett algorithm works with divisor n
that is NOT a power of 2, so divisors like 0, 1, 2, 4, 8, 16, ...
are not allowed. This trivial case of divisor you can cover just by doing right bit-shift of big integer, because dividing by power of 2 is just a bit-shift. Any other divisor is allowed, including even divisors that are not power of 2.
Also it is important to note that my BarrettDivMod()
accepts ONLY dividend x
that is strictly smaller than divisor * 2^64
, in other words higher half of 128-bit dividend x
should be smaller than divisor. This is always true in your case of your big integer divison function, as higher half is always a remainder modulus divisor. This rule for x
should be checked by you, it is checked in my BarrettDivMod()
only as DEBUG assertion that is removed in release.
You can notice that BarrettDivMod()
has two big branches, these are two variants of same algorithm, first uses CLang/GCC only type unsigned __int128
, second uses only 64-bit instructions and hence suitable for MSVC.
I tried to target three compilers CLang/GCC/MSVC, but some how MSVC version got only 2x faster with Barrett, while CLang/GCC are 5x faster. Maybe I did some bug in MSVC code.
You can see that I used your class bi_uint
for time measurement of two versions of code - with regular divide and with Barrett. Important to note that I changed your code quite significantly, first to not use u128
(so that MSVC version compiles that has no u128), second not to modify data
vector, so it does read only division and doesn't store final result (this read-only is needed for me to run speed tests very fast without copying data
vector on each test iteration). So your code is broken in my snippet, it can't-be copy pasted to be used straight away, I only used your code for speed measurement.
Barrett reduction works faster not only because division is slower than multiplication, but also because multiplication and addition are both very well pipelined on moder CPUs, modern CPU can execute several mul or add instructions within one cycle, but only if these several mul/add don't depend on each other's result, in other words CPU can run several instructions in parallel within one cycle. As far as I know division can't be run in parallel, because there is only single module within CPU to make division, but still it is a bit pipelined, because after 50% of first division is done second division can be started in parallel at beginning of CPU pipeline.
On some computers you may notice that regular Divide version is much slower sometimes, this happens because CLang/GCC do fallback to library-based Soft implementation of Division even for 128 bit dividend. In this case my Barrett may show even 7-10x
times speedup, as it doesn't use library functions.
To overcome issue described above, about Soft division, it is better to add Assembly code with usage of DIV
instruction directly, or to find some Intrinsic function that implements this inside your compiler (I think CLang/GCC have such intrinsic). Also I can write this Assembly implementation if needed, just tell me in comments.
Update. As promised, implemented Assembly variant of 128 bit division for CLang/GCC, function UDiv128Asm()
. After this change it is used as a main implementation for CLang/GCC 128 division instead of regular u128(a) / b
. You may come back to regular u128 impementation by replacing #if 0
with #if 1
inside body of UDiv128()
function.
Try it online!
#include <cstdint>
#include <bit>
#include <stdexcept>
#include <string>
#include <immintrin.h>
#if defined(_MSC_VER) && !defined(__clang__)
#define IS_MSVC 1
#else
#define IS_MSVC 0
#endif
#if IS_MSVC
#include <intrin.h>
#endif
#define ASSERT_MSG(cond, msg) { if (!(cond)) throw std::runtime_error("Assertion (" #cond ") failed at line " + std::to_string(__LINE__) + "! Msg: '" + std::string(msg) + "'."); }
#define ASSERT(cond) ASSERT_MSG(cond, "")
#ifdef _DEBUG
#define DASSERT_MSG(cond, msg) ASSERT_MSG(cond, msg)
#else
#define DASSERT_MSG(cond, msg)
#endif
#define DASSERT(cond) DASSERT_MSG(cond, "")
using u16 = uint16_t;
using u32 = uint32_t;
using i64 = int64_t;
using u64 = uint64_t;
using UllPtr = unsigned long long *;
inline int GetExp(double x) {
return int((std::bit_cast<uint64_t>(x) >> 52) & 0x7FF) - 1023;
}
inline size_t BitSizeWrong(uint64_t x) {
return x == 0 ? 0 : (GetExp(x) + 1);
}
inline size_t BitSize(u64 x) {
size_t r = 0;
if (x >= (u64(1) << 32)) {
x >>= 32;
r += 32;
}
while (x >= 0x100) {
x >>= 8;
r += 8;
}
while (x) {
x >>= 1;
++r;
}
return r;
}
#if !IS_MSVC
inline u64 UDiv128Asm(u64 h, u64 l, u64 d, u64 * r) {
u64 q;
asm (R"(
.intel_syntax
mov rdx, %V[h]
mov rax, %V[l]
div %V[d]
mov %V[r], rdx
mov %V[q], rax
)"
: [q] "=r" (q), [r] "=r" (*r)
: [h] "r" (h), [l] "r" (l), [d] "r" (d)
: "rax", "rdx"
);
return q;
}
#endif
inline std::pair<u64, u64> UDiv128(u64 hi, u64 lo, u64 d) {
#if IS_MSVC
u64 r, q = _udiv128(hi, lo, d, &r);
return std::make_pair(q, r);
#else
#if 0
using u128 = unsigned __int128;
auto const dnd = (u128(hi) << 64) | lo;
return std::make_pair(u64(dnd / d), u64(dnd % d));
#else
u64 r, q = UDiv128Asm(hi, lo, d, &r);
return std::make_pair(q, r);
#endif
#endif
}
inline std::pair<u64, u64> UMul128(u64 a, u64 b) {
#if IS_MSVC
u64 hi, lo = _umul128(a, b, &hi);
return std::make_pair(hi, lo);
#else
using u128 = unsigned __int128;
auto const x = u128(a) * b;
return std::make_pair(u64(x >> 64), u64(x));
#endif
}
inline std::pair<u64, u64> USub128(u64 a_hi, u64 a_lo, u64 b_hi, u64 b_lo) {
u64 r_hi, r_lo;
_subborrow_u64(_subborrow_u64(0, a_lo, b_lo, (UllPtr)&r_lo), a_hi, b_hi, (UllPtr)&r_hi);
return std::make_pair(r_hi, r_lo);
}
inline std::pair<u64, u64> UAdd128(u64 a_hi, u64 a_lo, u64 b_hi, u64 b_lo) {
u64 r_hi, r_lo;
_addcarry_u64(_addcarry_u64(0, a_lo, b_lo, (UllPtr)&r_lo), a_hi, b_hi, (UllPtr)&r_hi);
return std::make_pair(r_hi, r_lo);
}
inline int UCmp128(u64 a_hi, u64 a_lo, u64 b_hi, u64 b_lo) {
if (a_hi != b_hi)
return a_hi < b_hi ? -1 : 1;
return a_lo == b_lo ? 0 : a_lo < b_lo ? -1 : 1;
}
std::pair<u64, size_t> BarrettRS64(u64 n) {
// https://www.nayuki.io/page/barrett-reduction-algorithm
ASSERT_MSG(n >= 3 && (n & (n - 1)) != 0, "n " + std::to_string(n))
size_t const nbits = BitSize(n);
// 2^s = q * n + r; 2^s = (2^64 + q0) * n + r; 2^s - n * 2^64 = q0 * n + r
u64 const dnd_hi = (nbits >= 64 ? 0ULL : (u64(1) << nbits)) - n;
auto const q0 = UDiv128(dnd_hi, 0, n).first;
return std::make_pair(q0, nbits);
}
template <bool Use128 = true, bool Adjust = true>
std::pair<u64, u64> BarrettDivMod64(u64 x_hi, u64 x_lo, u64 n, u64 r, size_t s) {
// ((x_hi * 2^64 + x_lo) * (2^64 + r)) >> (64 + s)
DASSERT(x_hi < n);
#if !IS_MSVC
if constexpr(Use128) {
using u128 = unsigned __int128;
u128 const xf = (u128(x_hi) << 64) | x_lo;
u64 q = u64((u128(x_hi) * r + xf + u64((u128(x_lo) * r) >> 64)) >> s);
if (s < 64) {
u64 t = x_lo - q * n;
if constexpr(Adjust) {
u64 const mask = ~u64(i64(t - n) >> 63);
q += mask & 1;
t -= mask & n;
}
return std::make_pair(q, t);
} else {
u128 t = xf - u128(q) * n;
return t < n ? std::make_pair(q, u64(t)) : std::make_pair(q + 1, u64(t) - n);
}
} else
#endif
{
auto const w1a = UMul128(x_lo, r).first;
auto const [w2b, w1b] = UMul128(x_hi, r);
auto const w2c = x_hi, w1c = x_lo;
u64 w1, w2 = _addcarry_u64(0, w1a, w1b, (UllPtr)&w1);
w2 += _addcarry_u64(0, w1, w1c, (UllPtr)&w1);
w2 += w2b + w2c;
if (s < 64) {
u64 q = (w2 << (64 - s)) | (w1 >> s);
u64 t = x_lo - q * n;
if constexpr(Adjust) {
u64 const mask = ~u64(i64(t - n) >> 63);
q += mask & 1;
t -= mask & n;
}
return std::make_pair(q, t);
} else {
u64 const q = w2;
auto const [b_hi, b_lo] = UMul128(q, n);
auto const [t_hi, t_lo] = USub128(x_hi, x_lo, b_hi, b_lo);
return t_hi != 0 || t_lo >= n ? std::make_pair(q + 1, t_lo - n) : std::make_pair(q, t_lo);
}
}
}
#include <random>
#include <iomanip>
#include <iostream>
#include <chrono>
void TestBarrett() {
std::mt19937_64 rng{123}; //{std::random_device{}()};
for (size_t i = 0; i < (1 << 11); ++i) {
size_t const nbits = rng() % 63 + 2;
u64 n = 0;
do {
n = (u64(1) << (nbits - 1)) + rng() % (u64(1) << (nbits - 1));
} while (!(n >= 3 && (n & (n - 1)) != 0));
auto const [br, bs] = BarrettRS64(n);
for (size_t j = 0; j < (1 << 6); ++j) {
u64 const hi = rng() % n, lo = rng();
auto const [ref_q, ref_r] = UDiv128(hi, lo, n);
u64 bar_q = 0, bar_r = 0;
for (size_t k = 0; k < 2; ++k) {
bar_q = 0; bar_r = 0;
if (k == 0)
std::tie(bar_q, bar_r) = BarrettDivMod64<true>(hi, lo, n, br, bs);
else
std::tie(bar_q, bar_r) = BarrettDivMod64<false>(hi, lo, n, br, bs);
ASSERT_MSG(bar_q == ref_q && bar_r == ref_r, "i " + std::to_string(i) + ", j " + std::to_string(j) + ", k " + std::to_string(k) +
", nbits " + std::to_string(nbits) + ", n " + std::to_string(n) + ", bar_q " + std::to_string(bar_q) +
", ref_q " + std::to_string(ref_q) + ", bar_r " + std::to_string(bar_r) + ", ref_r " + std::to_string(ref_r));
}
}
}
}
class bi_uint
{
public:
using u64_t = std::uint64_t;
constexpr static std::size_t u64_bits = 8 * sizeof(u64_t);
//little-endian
std::vector<u64_t> data;
static auto constexpr DefPrep = [](auto n){
return std::make_pair(false, false);
};
static auto constexpr DefDivMod = [](auto dnd_hi, auto dnd_lo, auto dsr, auto const & prep){
return UDiv128(dnd_hi, dnd_lo, dsr);
};
//User should guarantee data.size()>0 and val>0
template <typename PrepT = decltype(DefPrep), typename DivModT = decltype(DefDivMod)>
void self_div(const u64_t val, PrepT const & Prep = DefPrep, DivModT const & DivMod = DefDivMod)
{
auto it = data.rbegin();
if(data.size() == 1) {
*it /= val;
return;
}
u64_t rem_hi = 0, rem_lo = 0;
if(*it < val) {
rem_lo = *it++;
//data.pop_back();
}
auto const prep = Prep(val);
u64_t r = rem_lo % val;
u64_t q = 0;
while(it != data.rend()) {
rem_hi = r;
rem_lo = *it;
std::tie(q, r) = DivMod(rem_hi, rem_lo, val, prep);
//*it++ = static_cast<u64_t>(q);
it++;
auto volatile out = static_cast<u64_t>(q);
}
}
};
void TestSpeed() {
auto Time = []{
static auto const gtb = std::chrono::high_resolution_clock::now();
return std::chrono::duration_cast<std::chrono::duration<double>>(
std::chrono::high_resolution_clock::now() - gtb).count();
};
std::mt19937_64 rng{123};
std::vector<u64> limbs, divisors;
for (size_t i = 0; i < (1 << 17); ++i)
limbs.push_back(rng());
for (size_t i = 0; i < (1 << 8); ++i) {
size_t const nbits = rng() % 63 + 2;
u64 n = 0;
do {
n = (u64(1) << (nbits - 1)) + rng() % (u64(1) << (nbits - 1));
} while (!(n >= 3 && (n & (n - 1)) != 0));
divisors.push_back(n);
}
std::cout << std::fixed << std::setprecision(3);
double div_time = 0;
{
bi_uint x;
x.data = limbs;
auto const tim = Time();
for (auto dsr: divisors)
x.self_div(dsr);
div_time = Time() - tim;
std::cout << "Divide time " << div_time << " sec" << std::endl;
}
{
bi_uint x;
x.data = limbs;
for (size_t i = 0; i < 2; ++i) {
if (IS_MSVC && i == 0)
continue;
auto const tim = Time();
for (auto dsr: divisors)
x.self_div(dsr, [](auto n){ return BarrettRS64(n); },
[i](auto dnd_hi, auto dnd_lo, auto dsr, auto const & prep){
return i == 0 ? BarrettDivMod64<true>(dnd_hi, dnd_lo, dsr, prep.first, prep.second) :
BarrettDivMod64<false>(dnd_hi, dnd_lo, dsr, prep.first, prep.second);
});
double const bar_time = Time() - tim;
std::cout << "Barrett" << (i == 0 ? "128" : "64 ") << " time " << bar_time << " sec, boost " << div_time / bar_time << std::endl;
}
}
}
int main() {
try {
TestBarrett();
TestSpeed();
return 0;
} catch (std::exception const & ex) {
std::cout << "Exception: " << ex.what() << std::endl;
return -1;
}
}
Output:
Divide time 3.171 sec
Barrett128 time 0.675 sec, boost 4.695
Barrett64 time 0.642 sec, boost 4.937
Part 2
As you have a very interesting question, after few days when I first published this post, I decided to implement from scratch all big integer math.
Below code implements math operations +, -, *, /, <<, >>
for natural big numbers (positive integers), and +, -, *, /
for floating big numbers. Both types of numbers are of arbitrary size (even millions of bits). Besides those as you requested, I fully implemented Newton-Raphson (both square and cubic variants) and Goldschmidt fast division algorithms.
Here is code snippet only for Newton-Raphson/Golschmidt functions, remaining code as it is very large is linked below on external server:
BigFloat & DivNewtonRaphsonSquare(BigFloat b) {
// https://en.wikipedia.org/wiki/Division_algorithm#Newton%E2%80%93Raphson_division
auto a = *this;
a.exp_ += b.SetScale(0);
if (b.sign_) {
a.sign_ = !a.sign_;
b.sign_ = false;
}
thread_local BigFloat two, c_48_17, c_32_17;
thread_local size_t static_prec = 0;
if (static_prec != BigFloat::prec_) {
two = 2;
c_48_17 = BigFloat(48) / BigFloat(17);
c_32_17 = BigFloat(32) / BigFloat(17);
static_prec = BigFloat::prec_;
}
BigFloat x = c_48_17 - c_32_17 * b;
for (size_t i = 0, num_iters = std::ceil(std::log2(double(static_prec + 1)
/ std::log2(17.0))) + 0.1; i < num_iters; ++i)
x = x * (two - b * x);
*this = a * x;
return BitNorm();
}
BigFloat & DivNewtonRaphsonCubic(BigFloat b) {
// https://en.wikipedia.org/wiki/Division_algorithm#Newton%E2%80%93Raphson_division
auto a = *this;
a.exp_ += b.SetScale(0);
if (b.sign_) {
a.sign_ = !a.sign_;
b.sign_ = false;
}
thread_local BigFloat one, c_140_33, c_m64_11, c_256_99;
thread_local size_t static_prec = 0;
if (static_prec != BigFloat::prec_) {
one = 1;
c_140_33 = BigFloat(140) / BigFloat(33);
c_m64_11 = BigFloat(-64) / BigFloat(11);
c_256_99 = BigFloat(256) / BigFloat(99);
static_prec = BigFloat::prec_;
}
BigFloat e, y, x = c_140_33 + b * (c_m64_11 + b * c_256_99);
for (size_t i = 0, num_iters = std::ceil(std::log2(double(static_prec + 1)
/ std::log2(99.0)) / std::log2(3.0)) + 0.1; i < num_iters; ++i) {
e = one - b * x;
y = x * e;
x = x + y + y * e;
}
*this = a * x;
return BitNorm();
}
BigFloat & DivGoldschmidt(BigFloat b) {
// https://en.wikipedia.org/wiki/Division_algorithm#Goldschmidt_division
auto a = *this;
a.exp_ += b.SetScale(0);
if (b.sign_) {
a.sign_ = !a.sign_;
b.sign_ = false;
}
BigFloat one = 1, two = 2, f;
for (size_t i = 0;; ++i) {
f = two - b;
a *= f;
b *= f;
if (i % 3 == 0 && (one - b).GetScale() < -i64(prec_) + i64(bit_sizeof(Word)))
break;
}
*this = a;
return BitNorm();
}
See Output:
below, it will show that Newton-Raphson and Goldschmidt methods are actually 10x times slower than regular School-grade (called Reference
in output) algorithm. Between each other these 3 advanced algorithms are about same speed. Probably Raphson/Goldschmidt could be faster if to use Fast Fourier Transform for multiplication, because multiplication of two large numbers takes 95% of time of these algorithms. In code below all results of Raphson/Goldschmidt algorithms are not only time-measured but also checked for correctness of results compared to School-grade (Reference) algorithm (see diff 2^...
in console output, this shows how large is difference of result compared to school grade).
FULL SOURCE CODE HERE. Full code is so huge that it didn't fit into this StackOverflow due to SO limit of 30 000 characters per post, although I wrote this code from scracth specifically for this post. That's why providing external download link (PasteBin server), also click Try it online!
linke below, it is same copy of code that is run live on GodBolt's linux servers:
Try it online!
Output:
========== 1 K bits ==========
Reference 0.000029 sec
Raphson2 0.000066 sec, boost 0.440x, diff 2^-8192
Raphson3 0.000092 sec, boost 0.317x, diff 2^-8192
Goldschmidt 0.000080 sec, boost 0.365x, diff 2^-1022
========== 2 K bits ==========
Reference 0.000071 sec
Raphson2 0.000177 sec, boost 0.400x, diff 2^-16384
Raphson3 0.000283 sec, boost 0.250x, diff 2^-16384
Goldschmidt 0.000388 sec, boost 0.182x, diff 2^-2046
========== 4 K bits ==========
Reference 0.000319 sec
Raphson2 0.000875 sec, boost 0.365x, diff 2^-4094
Raphson3 0.001122 sec, boost 0.285x, diff 2^-32768
Goldschmidt 0.000881 sec, boost 0.362x, diff 2^-32768
========== 8 K bits ==========
Reference 0.000484 sec
Raphson2 0.002281 sec, boost 0.212x, diff 2^-65536
Raphson3 0.002341 sec, boost 0.207x, diff 2^-65536
Goldschmidt 0.002432 sec, boost 0.199x, diff 2^-8189
========== 16 K bits ==========
Reference 0.001199 sec
Raphson2 0.009042 sec, boost 0.133x, diff 2^-16382
Raphson3 0.009519 sec, boost 0.126x, diff 2^-131072
Goldschmidt 0.009047 sec, boost 0.133x, diff 2^-16380
========== 32 K bits ==========
Reference 0.004311 sec
Raphson2 0.039151 sec, boost 0.110x, diff 2^-32766
Raphson3 0.041058 sec, boost 0.105x, diff 2^-262144
Goldschmidt 0.045517 sec, boost 0.095x, diff 2^-32764
========== 64 K bits ==========
Reference 0.016273 sec
Raphson2 0.165656 sec, boost 0.098x, diff 2^-524288
Raphson3 0.210301 sec, boost 0.077x, diff 2^-65535
Goldschmidt 0.208081 sec, boost 0.078x, diff 2^-65534
========== 128 K bits ==========
Reference 0.059469 sec
Raphson2 0.725865 sec, boost 0.082x, diff 2^-1048576
Raphson3 0.735530 sec, boost 0.081x, diff 2^-1048576
Goldschmidt 0.703991 sec, boost 0.084x, diff 2^-131069
========== 256 K bits ==========
Reference 0.326368 sec
Raphson2 3.007454 sec, boost 0.109x, diff 2^-2097152
Raphson3 2.977631 sec, boost 0.110x, diff 2^-2097152
Goldschmidt 3.363632 sec, boost 0.097x, diff 2^-262141
========== 512 K bits ==========
Reference 1.138663 sec
Raphson2 12.827783 sec, boost 0.089x, diff 2^-524287
Raphson3 13.799401 sec, boost 0.083x, diff 2^-524287
Goldschmidt 15.836072 sec, boost 0.072x, diff 2^-524286