I am a computer science student; I am studying the Algorithms course independently.
During the course, I saw this question:
Given an n-bit integer N, find a polynomial (in n) time algorithm that decides whether N is a power (that is, there are integers a and k > 1 so that a^k = N).
I thought of a first option that is exponential in n: For all k , 1<k<N , try to divide N by k until I get result 1.
For example, if N = 27, I will start with k = 2 , because 2 doesn't divide 27, I will go to next k =3. I will divide 27 / 3 to get 9, and divide it again until I will get 1. This is not a good solution because it is exponential in n.
My second option is using Modular arithmetic, using ak ≡ 1 mod (k+1) if gcd(a, k+1 ) = 1 (Euler's theorem). I don't know if a and k are relatively prime.
I am trying to write an algorithm, but I am struggling to do it:
function power(N)
Input: Positive integer N
Output: yes/no
Pick positive integers a_1, a_2, . . . , a_k < N at random
if (a_i)^N−1 ≡ 1 (mod N)
for all i = 1, 2, . . . , k:
return yes
else:
return no
I'm not sure if the algorithm is correct. How can I write this correctly?