I am trying to exercise a simulation of Sierpinski triangle in R with affine transformation and Iterated Function System (IFS). And hopefully, I can further exercise how the simulation of Barnsley's fern can also be done. For those who know Chinese, this video is my starting point of this exercise.
Here is a short introduction of the simulation process:
- Create an equilateral triangle, name the vertices A, B, C
- Create a random initial point lying inside the triangle ABC
- Sample A, B, C with equal chances
- If the outcome is A, then move the initial point to the midpoint of A and itself
- Repeat step 3, and move the last point to the midpoint of the outcome point and itself. By doing this repeatedly, we should see the path of the points looks like a Sierpinski triangle.
I wonder how the assignment of variable works inside a self-defined function. I would like to create an object (a matrix or a dataframe) to store the path of simulated points and keep updating the object to keep track of how the points move.
the following is my current codes:
# create the triangle
triangle <- matrix(c(A = c(-1,0),
B = c(1, 0),
C = c(0, sqrt(3))),
byrow = TRUE, nrow = 3, ncol = 2)
colnames(triangle) <- c("X", "Y") # axis name
rownames(triangle) <- c("A", "B", "C")
# sample an initial point inside the triangle ABC
sampleInit <- function(){
X <- runif(1, min = -1, max = 1)
Y <- runif(1, min = 0, max = sqrt(3))
if( (Y >= 0) && (Y <= (sqrt(3)*X + sqrt(3))) && (Y <= -sqrt(3)*X+sqrt(3)) ){
return(cbind(X, Y))
} else {
sampleInit()
}
}
### graph: plot the triangle and the initial point together
graphics.off()
plot(triangle, xlim = c(-1, 1), ylim = c(0, sqrt(3)))
par(new = TRUE)
plot(sampleInit(), xlim = c(-1, 1), ylim = c(0, sqrt(3)), col = "red")
### a three-sided dice: determine the direction to move along
diceRoll <- function(){
return(sample(c("A", "B", "C"), size = 1, prob = c(1/3, 1/3, 1/3)))
}
## path
stepTrace <- as.data.frame(sampleInit())
move <- function(diceOutCome, stepTrace){
lastStep <- tail(stepTrace, 1)
if(diceOutCome == "A"){
X <- (-1 + lastStep[,1])/2
Y <- (0 + lastStep[,2])/2
} else if(diceOutCome == "B"){
X <- (1 + lastStep[,1])/2
Y <- (0 + lastStep[,2])/2
} else if(diceOutCome == "C"){
X <- (0 + lastStep[,1])/2
Y <- (sqrt(3) + lastStep[,2])/2
}
lastStep <- cbind(X, Y)
stepTrace <- rbind(stepTrace, lastStep)
}
move(diceRoll(), stepTrace)
View(stepTrace)
Sorry for the long story and not jumping to the key question directly. My question is that stepTrace
(the object I would like to store the path) didn't get updated as I execute the last two lines.
What I imagined was the assignment process in move()
updates the dataframe stepTrace
, however it turns out it doesn't. I check my code in the debugger, and found out that stepTrace
did get updated inside the function call, but it didn't pass the new assigned value outside the function call. That's why I would like to ask how does the assignment process works in R. What is the difference between the this kind of process and other general purpose languages such as Java? (What I imagined to do this exercise in Java would not encounter this kind of assignment issue. Correct me if I am wrong since I am still new to Java)
Similar problems bother me when I tried to assign variables inside a loop. I know there is a base function assign
that helps to resolve is issue, but I just don't know what is the mechanism behind it.
I tried to google my question, but I am not sure which keyword I should use, and I didn't find direct answers to my question. Any comment, keyword or external resource to the documentation is appreciated!