There are a lot of answers here, but I'll add my approach since I found this post while working on the same problem.
Starting with what we know here are the number from 0 to 16.
Number encoded in bits minimum number of bits to encode
0 000000 1
1 000001 1
2 000010 2
3 000011 2
4 000100 3
5 000101 3
6 000110 3
7 000111 3
8 001000 4
9 001001 4
10 001010 4
11 001011 4
12 001100 4
13 001101 4
14 001110 4
15 001111 4
16 010000 5
looking at the breaks, it shows this table
number <= number of bits
1 0
3 2
7 3
15 4
So, now how do we compute the pattern?
Remember that log base 2 (n) = log base 10 (n) / log base 10 (2)
number logb10 (n) logb2 (n) ceil[logb2(n)]
1 0 0 0 (special case)
3 0.477 1.58 2
7 0.845 2.807 3
8 0.903 3 3 (special case)
15 1.176 3.91 4
16 1.204 4 4 (special case)
31 1.491 4.95 5
63 1.799 5.98 6
Now the desired result matching the first table. Notice how also some values are special cases. 0 and any number which is a powers of 2. These values dont change when you apply ceiling so you know you need to add 1 to get
the minimum bit field length.
To account for the special cases add one to the input. The resulting code implemented in python is:
from math import log
from math import ceil
def min_num_bits_to_encode_number(a_number):
a_number=a_number+1 # adjust by 1 for special cases
# log of zero is undefined
if 0==a_number:
return 0
num_bits = int(ceil(log(a_number,2))) # logbase2 is available
return (num_bits)