I wrote this program to solve the dining philosophers problem using Dijkstra's algorithm, notice that I'm using an array of booleans (data->locked
) instead of an array of binary semaphores.
I'm not sure if this solution is valid (hence the SO question).
Will access to the data->locked
array in both test
and take_forks
functions cause data races? if so is it even possible to solve this problem using Dijkstra's algorithm with only mutexes?
I'm only allowed to use mutexes, no semaphores, no condition variables (it's an assignment).
Example of usage:
./a.out 4 1000 1000
#include <pthread.h>
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <stdbool.h>
#define NOT_HUNGRY 1
#define HUNGRY 2
#define EATING 3
#define RIGHT ((i + 1) % data->n)
#define LEFT ((i + data->n - 1) % data->n)
typedef struct s_data
{
int n;
int t_sleep;
int t_eat;
int *state;
bool *locked;
pthread_mutex_t *state_mutex;
} t_data;
typedef struct s_arg
{
t_data *data;
int i;
} t_arg;
int ft_min(int a, int b)
{
if (a < b)
return (a);
return (b);
}
int ft_max(int a, int b)
{
if (a > b)
return (a);
return (b);
}
// if the LEFT and RIGHT threads are not eating
// and thread number i is hungry, change its state to EATING
// and signal to the while loop in `take_forks` to stop blocking.
// if a thread has a state of HUNGRY then it's guaranteed
// to be out of the critical section of `take_forks`.
void test(int i, t_data *data)
{
if (
data->state[i] == HUNGRY
&& data->state[LEFT] != EATING
&& data->state[RIGHT] != EATING
)
{
data->state[i] = EATING;
data->locked[i] = false;
}
}
// set the state of the thread number i to HUNGRY
// and block until the LEFT and RIGHT threads are not EATING
// in which case they will call `test` from `put_forks`
// which will result in breaking the while loop
void take_forks(int i, t_data *data)
{
pthread_mutex_lock(data->state_mutex);
data->locked[i] = true;
data->state[i] = HUNGRY;
test(i, data);
pthread_mutex_unlock(data->state_mutex);
while (data->locked[i]);
}
// set the state of the thread number i to NOT_HUNGRY
// then signal to the LEFT and RIGHT threads
// so they can start eating when their neighbors are not eating
void put_forks(int i, t_data *data)
{
pthread_mutex_lock(data->state_mutex);
data->state[i] = NOT_HUNGRY;
test(LEFT, data);
test(RIGHT, data);
pthread_mutex_unlock(data->state_mutex);
}
void *philosopher(void *_arg)
{
t_arg *arg = _arg;
while (true)
{
printf("%d is thinking\n", arg->i);
take_forks(arg->i, arg->data);
printf("%d is eating\n", arg->i);
usleep(arg->data->t_eat * 1000);
put_forks(arg->i, arg->data);
printf("%d is sleeping\n", arg->i);
usleep(arg->data->t_sleep * 1000);
}
return (NULL);
}
void data_init(t_data *data, pthread_mutex_t *state_mutex, char **argv)
{
int i = 0;
data->n = atoi(argv[1]);
data->t_eat = atoi(argv[2]);
data->t_sleep = atoi(argv[3]);
pthread_mutex_init(state_mutex, NULL);
data->state_mutex = state_mutex;
data->state = malloc(data->n * sizeof(int));
data->locked = malloc(data->n * sizeof(bool));
while (i < data->n)
{
data->state[i] = NOT_HUNGRY;
data->locked[i] = true;
i++;
}
}
int main(int argc, char **argv)
{
pthread_mutex_t state_mutex;
t_data data;
t_arg *args;
pthread_t *threads;
int i;
if (argc != 4)
{
fputs("Error\nInvalid argument count\n", stderr);
return (1);
}
data_init(&data, &state_mutex, argv);
args = malloc(data.n * sizeof(t_arg));
i = 0;
while (i < data.n)
{
args[i].data = &data;
args[i].i = i;
i++;
}
threads = malloc(data.n * sizeof(pthread_t));
i = 0;
while (i < data.n)
{
pthread_create(threads + i, NULL, philosopher, args + i);
i++;
}
i = 0;
while (i < data.n)
pthread_join(threads[i++], NULL);
}