IIUC, you can either use tf.matmul
directly as part of your model and transpose b
or explicitly wrap the operation in a Lambda
layer:
import tensorflow as tf
a = tf.keras.layers.Input((4, 7))
b = tf.keras.layers.Input((4, 7))
output = tf.matmul(a, b, transpose_b=True)
model = tf.keras.Model([a, b], output)
model.summary()
Model: "model_1"
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
input_15 (InputLayer) [(None, 4, 7)] 0 []
input_16 (InputLayer) [(None, 4, 7)] 0 []
tf.linalg.matmul_2 (TFOpLambda (None, 4, 4) 0 ['input_15[0][0]',
) 'input_16[0][0]']
==================================================================================================
Total params: 0
Trainable params: 0
Non-trainable params: 0
__________________________________________________________________________________________________
Or
import tensorflow as tf
a = tf.keras.layers.Input((4, 7))
b = tf.keras.layers.Input((4, 7))
output = tf.keras.layers.Lambda(lambda x: tf.matmul(x[0], x[1], transpose_b=True))([a, b])
model = tf.keras.Model([a, b], output)
model.summary()