0

I have the following 2 excel files:

df1.xlsx:

SETTLED_BILL_ID APPROVED_BY BILL_DESCRIPTION BILLED_AMOUNT BILL_CONTROL_NUMBER

56006427 111 Loan Application 30000 991110749361

55111860 111 Loan Application 30000 991110749370

56606452 111 Loan Application 30000 991110749376

55163447 111 Loan Application 30000 991110749378

55213501 111 Loan Application 30000 991110749380

55094012 111 Loan Application 30000 991110749381

55739677 111 Loan Application 30000 991110749382

55191825 111 Loan Application 30000 991110749383

55952559 111 Loan Application 30000 991110749387

58316565 111 Loan Application 30000 991110749390

55094013 111 Loan Application 30000 991110749392

55262079 111 Loan Application 30000 991110749394

58148764 111 Loan Application 30000 991110749397

55314522 111 Loan Application 30000 991110749399

55192521 111 Loan Application 30000 991110749398

55216501 111 Loan Application 30000 991110749400

58769648 111 Loan Application 30000 991110749403

55236840 111 Loan Application 30000 991110749404

56062780 111 Loan Application 30000 991110770598

58778154 111 Loan Application 30000 991110749406

55596936 111 Loan Application 30000 991110749409

and df2.xlsx

id appcategory sname sex app_year paid_status BILL_CONTROL_NUMBER

206348 1 MSAGATI M 2020 1 991110749361

206349 1 MWANSELE M 2020 1 991110749370

206350 1 MWAKO M 2020 1 991110749376

206351 1 DISMAS M 2020 1 991110749364

206352 1 NYANDWI M 2020 1 991110749365

206353 1 THADEUS M 2020 1 991110749366

206354 1 MAKOBA M 2020 1 991110749367

206355 1 MACHA M 2020 1 991110749368

206356 1 BAISHE F 2020 1 991110749392

206357 1 ANUWAR M 2020 1 991110749394

206358 1 SOSPETER M 2020 1 991110749397

206360 1 SHEMAHONGE M 2020 1 991110749373 206362 1 NGOGO M 2020 1 991110749375

206363 1 FARANGA M 2020 1 991110749376

206364 1 ADOLF M 2020 1 991110749377

206365 1 ELIAS M 2020 1 991110749378

206367 1 SABRI M 2020 1 991110749380

206368 1 JOHN M 2020 1 991110770598

206369 1 LUGANGA M 2020 1 991110749406

206370 1 HUCHE M 2020 1 991110749383

I want to check if all BILL_CONTROL_NUMBER from df1 are present in df2

It can be solved using the Index + Match functionality of excel. What shall be the best way to replicate it in Pandas.

Desired Output: add a new column 'RESULTS'

SETTLED_BILL_ID APPROVED_BY BILL_DESCRIPTION BILLED_AMOUNT BILL_CONTROL_NUMBER RESULTS

56006427 111 Loan Application 30000 991110749361 TRUE

55111860 111 Loan Application 30000 991110749370 TRUE

56606452 111 Loan Application 30000 991110749376 TRUE

55163447 111 Loan Application 30000 991110749378 TRUE

55213501 111 Loan Application 30000 991110749380 TRUE

55094012 111 Loan Application 30000 991110749381 FALSE

55739677 111 Loan Application 30000 991110749382 FALSE

55191825 111 Loan Application 30000 991110749383 TRUE

55952559 111 Loan Application 30000 991110749387 FALSE

58316565 111 Loan Application 30000 991110749390 FALSE

55094013 111 Loan Application 30000 991110749392 TRUE

55262079 111 Loan Application 30000 991110749394 TRUE

58148764 111 Loan Application 30000 991110749397 TRUE

55314522 111 Loan Application 30000 991110749399 FALSE

55192521 111 Loan Application 30000 991110749398 FALSE

55216501 111 Loan Application 30000 991110749400 FALSE

58769648 111 Loan Application 30000 991110749403 FALSE

55236840 111 Loan Application 30000 991110749404 FALSE

56062780 111 Loan Application 30000 991110770598 TRUE

58778154 111 Loan Application 30000 991110749406 TRUE

55596936 111 Loan Application 30000 991110749409 FALSE

Equivalent Excel formula =NOT(ISERROR(MATCH(E2,$F$2:$F$21,0)))

Link to df1

Link to df2

Link to desired output

0 Answers0