After checking the documentation on triangles of networkx, I've wondered if there is a more efficient way of generating a triangle free graph than to randomly spawn graphs until a triangle free one happens to emerge, (in particular if one would like to use a constant random seed).
Below is code that spawns graphs until they are triangle free, yet with varying random seeds. For a graph of 10 nodes it already takes roughly 20 seconds.
def create_triangle_free_graph(show_graphs):
seed = 42
nr_of_nodes = 10
probability_of_creating_an_edge = 0.85
nr_of_triangles = 1 # Initialise at 1 to initiate while loop.
while nr_of_triangles > 0:
graph = nx.fast_gnp_random_graph(
nr_of_nodes, probability_of_creating_an_edge
)
triangles = nx.triangles(G).values()
nr_of_triangles = sum(triangles) / 3
print(f"nr_of_triangles={nr_of_triangles}")
return graph
Hence, I would like to ask: Are there faster ways to generate triangle free graphs (using random seeds) in networkx?