This question refers to Obtaining summary shap plot for catboost model with tidymodels in R. Given the comment below the question, the OP found a solution but did not share it with the community so far.
I want to analyze my tree ensembles fitted with the tidymodels
package with SHAP value plots such as plots for single observations like
and to summarize the effect of all features of my dataset like
DALEXtra
provides a function to create SHAP values for tidymodels explain.tidymodels()
. force_plot
from the fastshap
package provide a wrapper for the plot function of the underlying python package SHAP
. But I can't understand how to make the function work with the output of the explain.tidymodels()
function.
Question : How can one generate such SHAP plots in R using tidymodels
and explain.tidymodels
?
MWE (for SHAP values with explain.tidymodels
)
library(MASS)
library(tidyverse)
library(tidymodels)
library(parsnip)
library(treesnip)
library(catboost)
library(fastshap)
library(DALEXtra)
set.seed(1337)
rec <- recipe(crim ~ ., data = Boston)
split <- initial_split(Boston)
train_data <- training(split)
test_data <- testing(split) %>% dplyr::select(-crim) %>% as.matrix()
model_default<-
parsnip::boost_tree(
mode = "regression"
) %>%
set_engine(engine = 'catboost', loss_function = 'RMSE')
#sometimes catboost is not loaded correctly the following two lines
#ensure prevent fitting errors
#https://github.com/curso-r/treesnip/issues/21 error is mentioned on last post
set_dependency("boost_tree", eng = "catboost", "catboost")
set_dependency("boost_tree", eng = "catboost", "treesnip")
model_fit_wf <- model_fit_wf <- workflow() %>% add_model(model_tune) %>% add_recipe(rec) %>% {parsnip::fit(object = ., data = train_data)}
SHAP_wf <- explain_tidymodels(model_fit_wf, data = X, y = train_data$crim, new_data = test_data