Forum,
I am currently looking into Azure Synapse as an option for migrating our on-prem data architecture. I am excited by the functionality it offers - SQL Pools, Spark Pools, and the accompanying notebooks. I get that Synapse can function as a all in one data platform, where my data scientists and data analists can use its functionality to deliver insights at will. However, a large part of the work my team does is creating data products.
We currently have a kubernetes cluster with several stand-alone API's that perform data-science operations in the larger whole of our software. They can be thought of as microservices. Most of the ETL is done in our SQL-server, and the microservices in our K8S cluster (usually python + some python packages + FastAPI) typically get the required data from our SQL-server through some SQL-query with an ODBC connector.
Now my question is, how suitable is Synapse for such an architecture? Can I call upon the SQL-pool or spark-pool to do the heavy data-lifting from outside the azure environment, say from a kubernetes pod?