I have data that depends on 4 independent variables (x1,x2,x3,x4) and I need a model (available in Python) to evaluate f(x1,x2,x3,x4) outside the data points. In principle, if I set 3 of my variables as constant values I can always use a polynomial fit of a reasonable degree (<5) to interpolate the data in the remaining dimension so I would like to generate a function that is capable to interpolate in all dimensions at once using a multivariate polynomial fit. It must be noted that the underlying function is non-linear (meaning that I should expect terms of the form x1^n*x2^m where n,m are not 0). What do you recommend?
To illustrate I am including a small sample of data:
(Note that the fact that some variables appear to be constant is due to the fact that this is just a small sample)
x1 x2 x3 x4 f
15 10 5 3 0.621646
15 10 5 5 0.488879
15 10 5 10 0.490204
15 10 7 0 0.616027
15 10 7 0.5 0.615497
15 10 7 1 0.619804
15 10 7 3 0.614494
15 10 7 5 0.556772
15 10 7 10 0.555393
15 20 0.5 0 0.764692
15 20 0.5 0.5 0.78774
15 20 0.5 1 0.799749
15 20 0.5 3 0.567796
15 20 0.5 5 0.328497
15 20 0.5 10 0.0923708
15 20 1 0 0.802219
15 20 1 0.5 0.811475
15 20 1 1 0.822908
15 20 1 3 0.721053
15 20 1 5 0.573549
15 20 1 10 0.206259
15 20 2 0 0.829069
15 20 2 0.5 0.831135
15 0 7 1 0.240144
15 0 7 3 0.258186
15 0 7 5 0.260836