After reading this, https://httpwg.org/specs/rfc7541.html#integer.representation
I am confused about quite a few things, although I seem to have the overall gist of the idea.
For one, What are the 'prefixes' exactly/what is their purpose?
For two:
C.1.1. Example 1: Encoding 10 Using a 5-Bit Prefix
The value 10 is to be encoded with a 5-bit prefix.
10 is less than 31 (2^5 - 1) and is represented using the 5-bit prefix.
0 1 2 3 4 5 6 7
+---+---+---+---+---+---+---+---+
| X | X | X | 0 | 1 | 0 | 1 | 0 | 10 stored on 5 bits
+---+---+---+---+---+---+---+---+
What are the leading Xs? What is the starting 0 for?
>>> bin(10)
'0b1010'
>>>
Typing this in the python IDE, you see almost the same output... Why does it differ? This is when the number fits within the number of prefix bits though, making it seemingly simple.
C.1.2. Example 2: Encoding 1337 Using a 5-Bit Prefix
The value I=1337 is to be encoded with a 5-bit prefix.
1337 is greater than 31 (25 - 1).
The 5-bit prefix is filled with its max value (31).
I = 1337 - (25 - 1) = 1306.
I (1306) is greater than or equal to 128, so the while loop body executes:
I % 128 == 26
26 + 128 == 154
154 is encoded in 8 bits as: 10011010
I is set to 10 (1306 / 128 == 10)
I is no longer greater than or equal to 128, so the while loop terminates.
I, now 10, is encoded in 8 bits as: 00001010.
The process ends.
0 1 2 3 4 5 6 7
+---+---+---+---+---+---+---+---+
| X | X | X | 1 | 1 | 1 | 1 | 1 | Prefix = 31, I = 1306
| 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1306>=128, encode(154), I=1306/128
| 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 10<128, encode(10), done
+---+---+---+---+---+---+---+---+
The octet-like diagram shows three different numbers being produced... Since the numbers are produced throughout the loop, how do you replicate this octet-like diagram within an integer? What is the actual final result? The diagram or "I" being 10, or 00001010.
def f(a, b):
if a < 2**b - 1:
print(a)
else:
c = 2**b - 1
remain = a - c
print(c)
if remain >= 128:
while 1:
e = remain % 128
g = e + 128
remain = remain / 128
if remain >= 128:
continue
else:
print(remain)
c+=int(remain)
print(c)
break
As im trying to figure this out, I wrote a quick python implementation of it, It seems that i am left with a few useless
variables, one being g
which in the documentation is the 26 + 128 == 154.
Lastly, where does 128 come from? I can't find any relation between the numbers besides the fact 2 raised to the 7th power is 128, but why is that significant? Is this because the first bit is reserved as a continuation flag? and an octet contains 8 bits so 8 - 1 = 7?