The baseball
data may be too small to see improvement by making the computations parallel; the overhead of passing the data to the different processes may be swamping any speedup by doing the calculations in parallel. Using the rbenchmark
package:
baseball10 <- baseball[rep(seq(length=nrow(baseball)), 10),]
benchmark(noparallel = ddply(baseball, .(year), numcolwise(mean)),
parallel = ddply(baseball, .(year), numcolwise(mean), .parallel=TRUE),
noparallel10 = ddply(baseball10, .(year), numcolwise(mean)),
parallel10 = ddply(baseball10, .(year), numcolwise(mean), .parallel=TRUE),
replications = 10)
gives results
test replications elapsed relative user.self sys.self user.child sys.child
1 noparallel 10 4.562 1.000000 4.145 0.408 0.000 0.000
3 noparallel10 10 14.134 3.098203 9.815 4.242 0.000 0.000
2 parallel 10 11.927 2.614423 2.394 1.107 4.836 6.891
4 parallel10 10 18.406 4.034634 4.045 2.580 10.210 9.769
With a 10 times bigger data set, the penalty for parallel is smaller. A more complicated computation would also tilt it even further in parallel's favor, likely giving it an advantage.
This was run on a Mac OS X 10.5.8 Core 2 Duo machine.