I am working on my first large python project. I have one function which has the following code in it:
# EXPAND THE EXPECTED VALUE TO APPLY TO ALL STATES,
# THEN UPDATE fullFnMat
EV_subset_expand = np.kron(EV_subset, np.ones((nrows, 1)))
fullFnMat[key] = staticMat[key] + EV_subset_expand
In my code profiler, it seems like this kronecker product is actually taking up a huge amount of time.
Function was called by...
ncalls tottime cumtime
/home/stevejb/myhg/dpsolve/ootest/tests/ddw2011/profile_dir/BellmanEquation.py:17(bellmanFn) <- 19 37.681 38.768 /home/stevejb/myhg/dpsolve/ootest/tests/ddw2011/profile_dir/dpclient.py:467(solveTheModel)
{numpy.core.multiarray.concatenate} <- 342 27.319 27.319 /usr/lib/pymodules/python2.7/numpy/lib/shape_base.py:665(kron)
/home/stevejb/myhg/dpsolve/ootest/tests/ddw2011/profile_dir/dpclient.py:467(solveTheModel) <- 1 11.041 91.781 <string>:1(<module>)
{method 'argsort' of 'numpy.ndarray' objects} <- 19 7.692 7.692 /usr/lib/pymodules/python2.7/numpy/core/fromnumeric.py:597(argsort)
/usr/lib/pymodules/python2.7/numpy/core/numeric.py:789(outer) <- 171 2.526 2.527 /usr/lib/pymodules/python2.7/numpy/lib/shape_base.py:665(kron)
{method 'max' of 'numpy.ndarray' objects} <- 209 2.034 2.034 /home/stevejb/myhg/dpsolve/ootest/tests/ddw2011/profile_dir/dpclient.py:391(getValPolMatrices)
Is there a way to get faster kronecker products in Numpy? It seems like it shouldn't take as long as it is.