The biggest problem here is that you are basically still on C and not on C++.
You are using C-functions like strlen
and `strcat which even do not compile with my C++ compiler.
Then, you forget the terminating '\0' character, if you copy from C-string literals. And then, neither strlen
nor strcat
can work correctly.
You are calling '+=' but have no operator defined. This will not work.
You did not define assignment operators at all. The compiler generated assignments will copy the pointer and not do a deep copy.
You are doing a lot of new
but never release the memory with delete
.
I get 25 compiler warnings wit "-wall".
So, you need to refactor a lot.
I once create a similar dynamic array (string), which is far from perfect, but it may give you an idea, how to implement your own String . . .
#include <iostream>
#include <sstream>
#include <initializer_list>
// -----------------------------------------------------------------------------------------------
// Definition of simple dynamic array class
template <typename T>
class DynamicArray {
// The Dynamic Array has an initial capacity.
// If more elements will be added, there will be a reallocation with double capacity
static constexpr unsigned int InitialCapacity{ 8 };
// Internal data ------------------------------------------------------------------------------
T* data{}; // Dynamic Storage for Data
unsigned int numberOfElements{}; // Number of elements currently in the container
unsigned int capacity{ InitialCapacity }; // Current maximum capacity of the container
public:
// Construction and Destruction ---------------------------------------------------------------
DynamicArray(); // Default constructor. Allocate new memory
DynamicArray(const unsigned int size); // Constructor for a given size. Allocate new memory
DynamicArray(const DynamicArray& other); // Copy constructor. Make a deep copy
DynamicArray(DynamicArray&& other); // Move constructor
// Special constructors
template <class Iterator> DynamicArray(Iterator begin, Iterator end); // Initialize from range
template <int N> DynamicArray(const T(&other)[N]); // Initialize from C_Sytle array,e.g. a string literal
template <int N> DynamicArray(T(&other)[N]);
DynamicArray(const std::initializer_list<T>& list); // Take data from initializer list
~DynamicArray(); // Destructor: Release previously allocated memory
// Housekeeping ---------------------------------------------------------------
bool empty() const; // Do we have elements in the container? Do not mix up with capacity
void clear(); // Clear will not delete anything. Just set element count to 0
unsigned int size() const; // How many elements are in the container
// Main working functions
void push_back(const T& d); // Add a new element at the end
// Operators for class------------------------ ---------------------------------------------------------------
T operator[] (const unsigned int i) const; // Index operator, get data at given index. No boundary check
T& operator[] (const unsigned int i); // Index operator, get data at given index. No boundary check
DynamicArray& operator=(const DynamicArray& other); // Assignment
DynamicArray& operator=(DynamicArray&& other); // Move Assignment
// Add iterator properties to class ---------------------------------------------------------------
class iterator { // Local class for iterator
T* iter{}; // This will be the iterator
T* begin{}; // For boundary check
T* end{}; // For boundary check
public: // Define alias names necessary for the iterator functionality
using iterator_category = std::random_access_iterator_tag;
using difference_type = std::ptrdiff_t;
using value_type = T;
using pointer = T*;
using reference = T&;
// Constructor
iterator(T* const i, T* const b, T* const e);
// Dereferencing
reference operator *() const;
pointer operator ->() const;
// Aithmetic operations
iterator& operator ++();
iterator& operator --();
iterator operator ++(int);
iterator operator --(int);
iterator operator +(const difference_type& n) const;
iterator& operator +=(const difference_type& n);
iterator operator -(const difference_type& n) const;
iterator& operator -=(const difference_type& n);
// Comparison
bool operator != (const iterator& other) const;
bool operator == (const iterator& other) const;
bool operator < (const iterator& other) const;
bool operator > (const iterator& other) const;
bool operator <= (const iterator& other) const;
bool operator >= (const iterator& other) const;
// Reference and difference
reference operator[] (const difference_type& n);
difference_type operator-(const iterator& other) const;
};
// Begin and end function to initialize an iterator
iterator begin() const;
iterator end() const;
// Working functions dealing with iterators. More may be added
iterator erase(iterator pos);
};
// Default constructor. Allocate new memory
template <typename T>
inline DynamicArray<T>::DynamicArray() {
data = new T[capacity];
}
// Constructor for certain size. Allocate new memory
template <typename T>
inline DynamicArray<T>::DynamicArray(const unsigned int size) : data(new T[size]), numberOfElements(0), capacity(size) {
}
// Copy constructor
template <typename T>
DynamicArray<T>::DynamicArray(const DynamicArray& other) { // Copy constructor. Make a deep copy
capacity = numberOfElements = other.numberOfElements;
data = new T[capacity]; // Get memory, same size as other container
for (size_t k = 0; k < other.numberOfElements; ++k)
data[k] = other.data[k]; // Copy data
}
// Move constructor
template <typename T>
DynamicArray<T>::DynamicArray(DynamicArray&& other) {
data = other.data;
numberOfElements = other.numberOfElements;
capacity = other.capacity;
other.capacity = InitialCapacity;
other.numberOfElements = 0;
other.data = new T[capacity];;
}
// Range constructor
template <typename T>
template <class Iterator>
DynamicArray<T>::DynamicArray(Iterator begin, Iterator end) {
data = new T[capacity];
for (Iterator i = begin; i != end; ++i)
push_back(*i);
}
// Construct from a const C-Style Array, like for example "Hello"
template <typename T>
template <int N>
DynamicArray<T>::DynamicArray(const T(&other)[N]) {
capacity = numberOfElements = N;
data = new T[capacity]; // Get memory, same size as other container
for (size_t k = 0; k < N; ++k)
data[k] = other[k]; // Copy data
}
// Construct from a C-Style Array
template <typename T>
template <int N>
DynamicArray<T>::DynamicArray(T(&other)[N]) {
capacity = numberOfElements = N;
data = new T[capacity]; // Get memory, same size as other container
for (size_t k = 0; k < N; ++k)
data[k] = other[k]; // Copy data
}
// Construct from an initializer list
template <typename T>
DynamicArray<T>::DynamicArray(const std::initializer_list<T>& list) {
data = new T[capacity];
for (const T& t : list) push_back(t);
}
// Destructor will release the dynamic allocated memory
template <typename T>
inline DynamicArray<T>::~DynamicArray() {
delete[] data;
} // Destructor: Release previously allocated memory
// Some houskeeping functions
template <typename T>
inline bool DynamicArray<T>::empty() const {
return numberOfElements == 0;
}
template <typename T>
inline void DynamicArray<T>::clear() {
numberOfElements = 0;
}; // Clear will not delete anything. Just set element count to 0
template <typename T>
inline unsigned int DynamicArray<T>::size() const {
return numberOfElements;
} // How many elements are in the container
// Main workhorse for a dynamic array.
// Store element, and alwaysprovide enough memory
template <typename T>
void DynamicArray<T>::push_back(const T& d) { // Add a new element at the end
if (numberOfElements >= capacity) { // Check, if capacity of this dynamic array is big enough
capacity *= 2; // Obviously not, we will double the capacity
T* temp = new T[capacity]; // Allocate new and more memory
for (unsigned int k = 0; k < numberOfElements; ++k)
temp[k] = data[k]; // Copy data from old memory to new memory
delete[] data; // Release old memory
data = temp; // And assign newly allocated memory to old pointer
}
data[numberOfElements++] = d; // And finally, store the given data at the end of the container
}
// Operators for class ------------------------ ---------------------------------------------------------------
template <typename T>
inline typename T DynamicArray<T>::operator[] (const unsigned int i) const {
return data[i];
} // Index operator, get data at given index. No boundary check
template <typename T>
inline typename T& DynamicArray<T>::operator[] (const unsigned int i) {
return data[i];
} // Index operator, get data at given index. No boundary check
// Assignement operator. Make a deep copy
template <typename T>
DynamicArray<T>& DynamicArray<T>::operator=(const DynamicArray& other) {
if (this != &other) { // Prevent self-assignment
delete[] data; // Release any previosly existing memory
capacity = numberOfElements = other.numberOfElements;// Take over capacity and number of elements from other container
data = new T[capacity]; // Get new memory, depending on size of other
for (unsigned int k = 0; k < numberOfElements; ++k) // Copy other data
data[k] = other.data[k];
}
return *this;
}
template <typename T>
DynamicArray<T>& DynamicArray<T>::operator=(DynamicArray&& other) { // Move Assignment
if (this != &other) { // Prevent self-assignment
data = other.data;
numberOfElements = other.numberOfElements;
capacity = other.capacity;
other.capacity = InitialCapacity;
other.numberOfElements = 0;
other.data = new T[capacity];;
}
return *this;
}
// Implementation of iterator functions ---------------------------------------------------------------------
// COnstruction
template <typename T>
inline DynamicArray<T>::iterator::iterator(T* const i, T* const b, T* const e) : iter(i), begin(b), end(e) {
}; // Constructor for the iterator
// Dereferencing
template <typename T>
inline typename DynamicArray<T>::iterator::reference DynamicArray<T>::iterator::operator *() const {
return *iter;
}
template <typename T>
inline typename DynamicArray<T>::iterator::pointer DynamicArray<T>::iterator::operator ->() const {
return iter;
}
// Arithmetic operations
template <typename T>
inline typename DynamicArray<T>::iterator& DynamicArray<T>::iterator::operator ++() {
if (iter < end)
++iter;
return *this;
}
template <typename T>
inline typename DynamicArray<T>::iterator& DynamicArray<T>::iterator::operator --() {
if (iter > begin)
--iter;
return *this;
}
template <typename T>
typename DynamicArray<T>::iterator DynamicArray<T>::iterator::operator ++(int) {
DynamicArray<T>::iterator tmp = *this;
if (this->iter < end)
++(*this);
return tmp;
}
template <typename T>
typename DynamicArray<T>::iterator DynamicArray<T>::iterator::operator --(int) {
DynamicArray<T>::iterator tmp = *this;
if (this->iter > begin)
--(*this);
return tmp;
}
template <typename T>
typename DynamicArray<T>::iterator DynamicArray<T>::iterator::operator +(const DynamicArray<T>::iterator::difference_type& n) const {
DynamicArray<T>::iterator tmp = *this;
DynamicArray<T>::iterator::difference_type k{ n };
if (k > 0)
while (k--)
++tmp;
else
while (k++)
--tmp;
return tmp;
}
template <typename T>
typename DynamicArray<T>::iterator& DynamicArray<T>::iterator::operator +=(const DynamicArray<T>::iterator::difference_type& n) {
DynamicArray<T>::iterator::difference_type k{ n };
if (k > 0)
while (k--)
++* this;
else
while (k++)
--* this;
return *this;
}
template <typename T>
typename DynamicArray<T>::iterator DynamicArray<T>::iterator::operator- (const DynamicArray<T>::iterator::difference_type& n) const {
DynamicArray<T>::iterator tmp = *this;
DynamicArray<T>::iterator::difference_type k{ n };
if (k > 0)
while (k--)
--tmp;
else
while (k++)
++tmp;
return tmp;
}
template <typename T>
typename DynamicArray<T>::iterator& DynamicArray<T>::iterator::operator -=(const typename DynamicArray<T>::iterator::difference_type& n) {
DynamicArray<T>::iterator::difference_type k{ n };
if (k > 0)
while (k--)
--* this;
else
while (k++)
++* this;
return *this;
}
// Comparison functions
template <typename T>
inline typename DynamicArray<T>::iterator::reference DynamicArray<T>::iterator::operator[] (const typename DynamicArray<T>::iterator::difference_type& n) {
return *(iter + n);
};
template <typename T>
inline bool DynamicArray<T>::iterator::operator != (const iterator& other) const {
return iter != other.iter;
}
template <typename T>
inline bool DynamicArray<T>::iterator::operator == (const iterator& other) const {
return iter == other.iter;
}
template <typename T>
inline bool DynamicArray<T>::iterator::operator < (const iterator& other) const {
return iter < other.iter;
}
template <typename T>
inline bool DynamicArray<T>::iterator::operator > (const iterator& other) const {
return iter > other.iter;
} // Comparison
template <typename T>
inline bool DynamicArray<T>::iterator::operator <= (const iterator& other) const {
return iter <= other.iter;
} // Comparison
template <typename T>
inline bool DynamicArray<T>::iterator::operator >= (const iterator& other) const {
return iter >= other.iter;
} // Comparison
// Delta
template <typename T>
inline typename DynamicArray<T>::iterator::difference_type DynamicArray<T>::iterator::operator-(const typename DynamicArray<T>::iterator& other) const {
return iter - other.iter;
}
// ------------------------------------------------------------------------
// Get iterators for dynamic array
template <typename T>
inline typename DynamicArray<T>::iterator DynamicArray<T>::begin() const {
return iterator(data, data, data + numberOfElements);
}
template <typename T>
inline typename DynamicArray<T>::iterator DynamicArray<T>::end() const {
return iterator(data + numberOfElements, data, data + numberOfElements);
}
// ------------------------------------------------------------------------
// Any other functions for dynamic array
template <typename T>
typename DynamicArray<T>::iterator DynamicArray<T>::erase(typename DynamicArray<T>::iterator pos) {
iterator result{ pos };
if (pos != end()) {
while (pos != end()) {
*pos = *(pos + 1);
++pos;
}
++result;
--numberOfElements;
}
return result;
}
// --------------------------------------------------------------------------------------------------------
// --------------------------------------------------------------------------------------------------------
// --------------------------------------------------------------------------------------------------------
// Using the dynamic array as a String, by using char as the content
using String = DynamicArray<char>;
// Some overloads for operators for easier handling
std::istream& operator >> (std::istream& is, String& s) {
s.clear();
char c{};
is >> std::ws;
while (is.peek() != EOF and is.get(c) and not isspace(c)) {
s.push_back(c);
}
if (not s.empty()) s.push_back(0);
return is;
}
std::ostream& operator << (std::ostream& os, const String& s) {
std::ostringstream oss;
for (char c : s) if (c != '\0') oss << c;
return os << oss.str();
}
bool operator < (const String& s1, const String& s2) {
unsigned int length{ (s1.size() < s2.size()) ? s1.size() : s2.size() };
for (unsigned int k{}; k < length; ++k) {
if (s1[k] == s2[k]) continue;
if (s1[k] < s2[k]) return true;
return false;
}
return false;
}
bool operator == (const String& s1, const String& s2) {
if (s1.size() != s2.size()) return false;
for (unsigned int k{}; k < s1.size(); ++k) {
if (s1[k] != s2[k]) return false;
}
return true;
}
bool operator != (const String& s1, const String& s2) { return not (s1 == s2); }