0
Name <- c("Jon", "Bill", "Bill", "Ben", "Tina");value <- c(5, 20, 236, 665,325)
Age <- c(23, 32, 32, 58, 26)
df <- data.frame(Name, Age,value)
df
Name Age value
1  Jon  23     5
2 Bill  32    20
3 Bill  32   236
4  Ben  58   665
5 Tina  26   325

if there are similar rows in Age and name retune one row and sum up all corresponding columns

Name Age value
1  Jon  23     5
2 Bill  32    256
4  Ben  58   665
5 Tina  26   325
Tpellirn
  • 660
  • 4
  • 11

2 Answers2

0
library(tidyverse)
df %>% 
  group_by(Name, Age) %>% 
  summarize(value = sum(value))

# A tibble: 4 x 3
# Groups:   Name [4]
  Name    Age value
  <chr> <dbl> <dbl>
1 Ben      58   665
2 Bill     32   256
3 Jon      23     5
4 Tina     26   325
Chamkrai
  • 5,912
  • 1
  • 4
  • 14
0
df %>% 
  dplyr::group_by(Name,Age) %>% 
  dplyr::summarise(value = sum(value))
 Name    Age value
  <chr> <dbl> <dbl>
1 Ben      58   665
2 Bill     32   256
3 Jon      23     5
4 Tina     26   325
Anurag N. Sharma
  • 362
  • 2
  • 10