Sometimes scipy.integrate.quad wrongly returns near-0 values. This has been addressed in this question, and seems to happen when the integration technique doesn't evaluate the function in the narrow range where it is significantly different than 0. In this and similar questions, the accepted solution was always to use the points parameter to tell scipy where to look. However, for me, this seems to actually make things worse.
Integration of exponential distribution pdf (answer should be just under 1):
from scipy import integrate
import numpy as np
t2=.01
#initial problem: fails when f is large
f=5000000
integrate.quad(lambda t:f*np.exp(-f*(t2-t)),0,t2)
#>>>(3.8816838175855493e-22, 7.717972744727115e-22)
Now, the "fix" makes it fail, even on smaller values of f where the original worked:
f=2000000
integrate.quad(lambda t:f*np.exp(-f*(t2-t)),0,t2)
#>>>(1.00000000000143, 1.6485317987792634e-14)
integrate.quad(lambda t:f*np.exp(-f*(t2-t)),0,t2,points=[t2])
#>>>(1.6117047218907458e-17, 3.2045611390981406e-17)
integrate.quad(lambda t:f*np.exp(-f*(t2-t)),0,t2,points=[t2,t2])
#>>>(1.6117047218907458e-17, 3.2045611390981406e-17)
What's going on here? How can I tell scipy what to do so that this will evaluate for arbitrary values of f?