I have a local linux server which contains 4 cores. I am running a pyspark job on it locally which basically reads two tables from database and saves the data into 2 dataframes. Now i am using these 2 dataframes to do some processing and then i am using the resultant processed df to save it into elasticsearch. Below is the code
def save_to_es(df):
df.write.format('es').option('es.nodes', 'es_node').option('es.port', some_port_no.).option('es.resource', index_name).option('es.mapping', es_mappings).save()
def coreFun():
spark = SparkSession.builder.master("local[1]").appName('test').getOrCreate()
spark.catalog.clearCache()
spark.sparkContext.setLogLevel("ERROR")
sc = spark.sparkContext
sqlContext = SQLContext(sc)
select_sql = """(select * from db."master_table")"""
df_master = spark.read.format("jdbc").option("url", "jdbcurl").option("dbtable", select_sql).option("user", "username").option("password", "password").option("driver", "database_driver").load()
select_sql_child = """(select * from db."child_table")"""
df_child = spark.read.format("jdbc").option("url", "jdbcurl").option("dbtable", select_sql_cost).option("user", "username").option("password", "password").option("driver", "database_driver").load()
merged_df = merged_python_file.merged_function(df_master,df_child,sqlContext)
logic1_df = logic1_python_file.logic1_function(df_master,sqlContext)
logic2_df = logic2_python_file.logic2_function(df_master,sqlContext)
logic3_df = logic3_python_file.logic3_function(df_master,sqlContext)
logic4_df = logic4_python_file.logic4_function(df_master,sqlContext)
logic5_df = logic5_python_file.logic5_function(df_master,sqlContext)
save_to_es(merged_df)
save_to_es(logic1_df)
save_to_es(logic2_df)
save_to_es(logic3_df)
save_to_es(logic4_df)
save_to_es(logic5_df)
end_time = int(time.time())
print(end_time-start_time)
sc.stop()
if __name__ == "__main__":
coreFun()
There are different logic for processing written in separate python files e.g logic1 in logic1_python_file etc. I send my df_master to separate functions and they return resultant processed df back to driver. Now i use this resultant processed df to save into elasticsearch. It works fine but problem is here everything is happening sequentially first merged_df gets processed and while it is getting processed others simply wait even though they are not really dependent on the o/p of merged_df function and then logic_1 gets processed while others wait and it goes on. This is not an ideal system design considering the o/p of one logic is not dependent on other.
I am sure asynchronous processing can help me here but i am not sure how to implement it here in my usecase. I know i may have to use some kind of queue(jms,kafka etc) to accomplish this but i dont have a complete picture.
Please let me know how can i utilize asynchronous processing here. Any other inputs which can help in improving the performance of job is welcome.