I am trying to manually predict a logistic regression model using the coefficient and intercept outputs from a scikit-learn model. However, I can't match up my probability predictions with the predict_proba
method from the classifier.
I have tried:
from sklearn.datasets import load_iris
from scipy.special import expit
import numpy as np
X, y = load_iris(return_X_y=True)
clf = LogisticRegression(random_state=0).fit(X, y)
# use sklearn's predict_proba function
sk_probas = clf.predict_proba(X[:1, :])
# and attempting manually (using scipy's inverse logit)
manual_probas = expit(np.dot(X[:1], clf.coef_.T)+clf.intercept_)
# with a completely manual inverse logit
full_manual_probas = 1/(1+np.exp(-(np.dot(iris_test, iris_coef.T)+clf.intercept_)))
outputs:
>>> sk_probas
array([[9.81815067e-01, 1.81849190e-02, 1.44120963e-08]])
>>> manual_probas
array([[9.99352591e-01, 9.66205386e-01, 2.26583306e-05]])
>>> full_manual_probas
array([[9.99352591e-01, 9.66205386e-01, 2.26583306e-05]])
I do seem to get the classes to match (using np.argmax
), but the probabilities are different. What am I missing?
I've looked at this and this but haven't managed to figure it out yet.