I've been on a bit of a "distilling everything to its fundamentals" kick lately, and I've been unable to find clear theoretical reasons for how the Traversable typeclass is defined, only practical ones of "it's useful to be able to traverse over applicative coalgebras, and lots of datatypes can do it" and a whole lot of hints.
I'm aware that there's an applicative "family", as described by https://duplode.github.io/posts/divisible-and-the-monoidal-quartet.html.
I'm also aware that while Traversable traversals are applicative coalgebras, the Traversable1 typeclass from 'semigroupoids' describes apply coalgebras, and the Distributive typeclass from 'distributive' describes functor algebras.
Additionally, I'm aware that Foldable, Foldable1, and theoretical fold family members, describe datatypes that can be folded using monoids, semigroups, and corresponding monoid family members such as magmas (for folding as a binary tree) and commutative versions of each (for folding as unordered versions of each).
As such, as Traversable is a subclass of Foldable, I assume it's monoidal in nature, and similarly I assume Traversable1 is semigroupal in nature, and Distributive is comonoidal in nature (as mentioned in its description in the 'distributive' package).
This feels like the right track, but where do Applicative and Apply come from here? Are there magmatic and commutative versions? Would there be a distributive family in a category with non-trivial comonoids?
Essentially, my question is "do these typeclasses exist, and what are they? if not, why not?":
class FoldableMagma t => TraversableMagma t where
traverseMagma :: ??? f => (a -> f b) -> (t a -> f (t b))
class FoldableCommute t => TraversableCommute t where
traverseCommute :: ??? f => (a -> f b) -> (t a -> f (t b))
class Foldable t => ContraTraversable t where
contraTraverse :: Divisible f => (b -> f a) -> (t a -> f (t b))
-- im really not sure on this last one
-- but it's how i'd expect an endofunctor over coalgebras to look
-- which seems potentially related to traversables?
Presumably less important bonus question: while attempting to research this, I came across the 'data-functor-logistic' package https://hackage.haskell.org/package/data-functor-logistic
This describes a version of Distributive over contravariant functors - is there an equivalent Traversable over Divisibles (or Decidables)?