To dynamically allocate a 2D array:
char **p;
int i, dim1, dim2;
/* Allocate the first dimension, which is actually a pointer to pointer to char */
p = malloc (sizeof (char *) * dim1);
/* Then allocate each of the pointers allocated in previous step arrays of pointer to chars
* within each of these arrays are chars
*/
for (i = 0; i < dim1; i++)
{
*(p + i) = malloc (sizeof (char) * dim2);
/* or p[i] = malloc (sizeof (char) * dim2); */
}
/* Do work */
/* Deallocate the allocated array. Start deallocation from the lowest level.
* that is in the reverse order of which we did the allocation
*/
for (i = 0; i < dim1; i++)
{
free (p[i]);
}
free (p);
Modify the above method. When you need another line to be added do *(p + i) = malloc (sizeof (char) * dim2);
and update i
. In this case you need to predict the max numbers of lines in the file which is indicated by the dim1
variable, for which we allocate the p
array first time. This will only allocate the (sizeof (int *) * dim1)
bytes, thus much better option than char p[dim1][dim2]
(in c99).
There is another way i think. Allocate arrays in blocks and chain them when there is an overflow.
struct _lines {
char **line;
int n;
struct _lines *next;
} *file;
file = malloc (sizeof (struct _lines));
file->line = malloc (sizeof (char *) * LINE_MAX);
file->n = 0;
head = file;
After this the first block is ready to use. When you need to insert a line just do:
/* get line into buffer */
file.line[n] = malloc (sizeof (char) * (strlen (buffer) + 1));
n++;
When n
is LINE_MAX
allocate another block and link it to this one.
struct _lines *temp;
temp = malloc (sizeof (struct _lines));
temp->line = malloc (sizeof (char *) * LINE_MAX);
temp->n = 0;
file->next = temp;
file = file->next;
Something like this.
When one block's n
becomes 0
, deallocate it, and update the current block pointer file
to the previous one. You can either traverse from beginning single linked list and traverse from the start or use double links.