Suppose I have a function that runs calculations, example being something like a dot product - I pass in an arrays A, B
of vectors and a float array C
, and the functions assigns:
C[i] = dot(A[i], B[i]);
If I create and start two threads that will run this function, and pass in the same three arrays to both the threads, under what circumstances is this type of action (perhaps using a different non-random mathematical operation etc.) not guaranteed give the same result (running the same application without any recompilation, and on the same machine)? I'm only interested in the context of a consumer PC.
I know that float operations are in general deterministic, but I do wonder whether perhaps something weird could happen and maybe on one thread the calculations will use an intermediate 80 bit register, but not in the other.
I would assume it's pretty much guaranteed the same binary code should run in both threads (is there some way this could not happen? The function being compiled multiple times for some reason, the compiler somehow figuring out it will run in multiple threads, and compiling it again, for some reason, for the second thread?). But I'm a a bit more worried that CPU cores might not have the same instruction sets, even on consumer level PCs.
Side question - what about GPUs in a similar scenario?
//
I'm assuming x86_64, Windows, c++, and dot
is a.x * b.x + a.y * b.y
. Can't give more info than that - using Unity IL2CPP, don't know how it compiles/with what options.
Motivation for the question: I'm writing a computational geometry procedure that modifies a mesh - I'll call this the "geometric mesh". The issue is that it could happen that the "rendering mesh" has multiple vertices for certain geometric positions - it's needed for flat shading for example - you have multiple vertices with different normals. However, the actual computational geometry procedure only uses purely geometric data of the positions in space.
So I see two options:
- Create a map from the rendering mesh to the geometric mesh (example - duplicate vertices being mapped to one unique vertex), run the procedure on the geometric mesh, then somehow modify the rendering mesh based on the result.
- Work with the rendering mesh directly. Slightly more inefficient as the procedure does calculations for all vertices, but much easier from a code perspective. But most of all I'm a bit worried that I could get two different values for two vertices that actually have the same position and that shouldn't happen. Only the position is used, and the position would be the same for both such vertices.