I am trying to solve a function in an annular domain that has a change of phase with respect to the angular direction of the annulus.
My attempt to solve it is the following:
import numpy as np
from scipy import integrate
def f(x0, y0):
r = np.sqrt(x0**2 + y0**2)
if r >= rIn and r <= rOut:
theta = np.arctan(y0 / x0)
R = np.sqrt((x - x0)**2 + (y - y0)**2 + z**2)
integrand = (np.exp(-1j * (k*R + theta))) / R
return integrand
else:
return 0
# Test
rIn = 0.5
rOut = 1.5
x = 1
y = 1
z = 1
k = 3.66
I = integrate.dblquad(f, -rOut, rOut, lambda x0: -rOut, lambda x0: rOut)
My problem is that I don't know how to get rid of the division by zero occuring when I evaluate theta
.
Any help will be more than appreciated!