So I have a set of points making up a simple polygon
points = [(x0, y0), (x1, y1), ..., (xn, yn)]
The polygon may be concave or convex, both cases must be handled.
Next I create two arcs for each line by treating the arc between point A-B
as different from the arc between point B-A
. Next I create paths from these points by always choosing the closest counter-clockwise arc. So one path goes clockwise and one counter-clockwise: [(x0, y0), (x1, y1), ... , (xn, yn)]
and [(xn, yn), (xn-1, yn-1), ... , (x0, y0)]
By traversing these arcs how do I know if the arcs are creating an internal face or an external face?
For example, in the two polygons below the same orange line is used on two different polygons. In the first polygon the top orange arc is in the internal face (pointing inwards) while in the other polygon the top orange arc is in the external face (pointing outwards).
My question arose from the answer by @HEKTO in this post: How to find all the polygonal shapes of given the vertices?.