I have a numpy array of array with shape (273, 168) so 273 sample and every sample has 168 observation.
I want as output 273 array of 24 observations.
Why my code give me a problem of dim differences?
x = np.random.randint(0,1,(273,168))
y = np.random.randint(0,1,(273,24))
model = tf.keras.Sequential()
model.add(tf.keras.layers.Conv1D(7, activation='relu', kernel_size=(3), input_shape=(168,273)))
model.add(tf.keras.layers.Dropout(0.2))
model.add(tf.keras.layers.Dense(24))
model.compile(loss=tf.losses.MeanSquaredError(),
optimizer=tf.optimizers.Adam(),
metrics=[tf.metrics.MeanAbsoluteError()])
model.fit(x,y))
model.predcit(x[42])
Anyone can help me?