I am trying to plot 95% confidence intervals on some simulated values but am running into so issues when i am trying to plot the CIs using the geom_ribbon() argument. The trouble I'm having it that my model does not show the CIs when i plot them, like so;
I have included all of my code below if anyone knows where i have gone wrong here;
set.seed(20220520)
#simulating 200 values between 0 and 1 from a uniform distribution
x = runif(200, min = 0, max = 1)
lam = exp(0.3+5*x)
y = rpois(200, lambda = lam)
#before we do this each Yi may contain zeros so we need to add a small constant
y <- y + .1
#combining x and y into a dataframe so we can plot
df = data.frame(x, y)
#fitting a Poisson GLM
model2 <- glm(y ~ x,
data = df,
family = poisson(link='log'))
#make predictions (this may be the same as predictions_mod2)
preds <- predict(model2, type = "response")
#making CI predictions
predictions_mod2 = predict(model2, df, se.fit = TRUE, type = 'response')
#calculate confidence intervals limit
upper_mod2 = predictions_mod2$fit+1.96*predictions_mod2$se.fit
lower_mod2 = predictions_mod2$fit-1.96*predictions_mod2$se.fit
#transform the CI limit to get one at the level of the mean
upper_mod2 = exp(upper_mod2)/(1+exp(upper_mod2))
lower_mod2 = exp(lower_mod2)/(1+exp(lower_mod2))
#combining into a df
predframe = data.frame(lwr=lower_mod2,upr=upper_mod2, x = df$x, y = df$y)
#plot model with 95% confidence intervals using ggplot
ggplot(df, aes(x, y)) +
geom_ribbon(data = predframe, aes(ymin=lwr, ymax=upr), alpha = 0.4) +
geom_point() +
geom_line(aes(x, preds2), col = 'blue')