I'm having a problem with fitting Gaussian process regression model to my data. I don't know what comes after X, y =
. I'm trying to follow the sklearn example.
My goal is to fit the model to these two objective functions:
def objectives (h,b,l,t):
f1 = 1.10471*(h**2)*l + 0.04811*t*b*(14.0 + l)
f2 = 2.1952 / (t**3)*b
return f1,f2
X
is a decision matrix I have generated with a sampling method:
sampler = qmc.LatinHypercube(d=4)
u_bounds = np.array([5.0, 5.0, 10.0, 10.0])
l_bounds = np.array([0.125, 0.125, 0.1, 0.1])
data = sampler.lhs_method(100)*(u_bounds-(l_bounds)) + (l_bounds)
y
is:
y=np.zeros((100,2))
for i in range(np.shape(data)[0]):
y[i,0], y[i,1] = objectives(data[i,0], data[i,1], data[i,2], data[i,3])
Here comes the obstacle when I try to instantiate the Gaussian process model. What comes after X, y =
?
X, y = ???(n_samples=500, noise=0, random_state=0)
kernel = DotProduct() + WhiteKernel()
gpr = GaussianProcessRegressor(kernel=kernel,
random_state=0).fit(X, y)
gpr.score(X, y)