I've been solving one algorithmic problem and found solution, as I thought. But unexpectedly I bumped into a weird problem.
Let's assume i have the following code on java 8/17(replicates on both), intel 11th gen processor:
import java.util.Arrays;
import java.util.concurrent.ThreadLocalRandom;
public class DistanceYandex{
static class Elem implements Comparable<Elem>{
int value;
int index;
long dist;
public Elem(int value, int index){
this.value = value;
this.index = index;
}
@Override
public int compareTo(Elem o){
return Integer.compare(value, o.value);
}
}
public static void main(String[] args){
int n = 300_000;
int k = 3_000;
Elem[] elems = new Elem[n];
for(int i = 0; i < n; i++){
elems[i] = new Elem(ThreadLocalRandom.current().nextInt(), i);
}
solve(n, k, elems);
}
private static void solve(int n, int k, Elem[] elems){
Arrays.sort(elems); // interesting line
long time = System.nanoTime();
for(int i = 0; i < n; i++){
elems[i].dist = findDistForIth(elems, i, k);
}
// i omit output, because it's irrelevant
// Arrays.sort(elems, Comparator.comparingInt(elem -> elem.index));
// System.out.print(elems[0].dist);
// for(int i = 1; i < n; i++){
// System.out.print(" " + elems[i].dist);
// }
System.out.println((System.nanoTime() - time)/1_000_000_000.0);
}
private static long findDistForIth(Elem[] elems, int i, int k){
int midElem = elems[i].value;
int left = i - 1;
int right = i + 1;
long dist = 0;
for(int j = 0; j < k; j++){
if(left < 0){
dist += elems[right++].value - midElem;
}else if(right >= elems.length){
dist += midElem - elems[left--].value;
}else{
int leftAdd = midElem - elems[left].value;
int rightAdd = elems[right].value - midElem;
if(leftAdd < rightAdd){
dist+=leftAdd;
left--;
}else{
dist+=rightAdd;
right++;
}
}
}
return dist;
}
}
Point your eyes at solve function.
Here we have simple solution, that calls function findDistForIth
n times and measures time it takes(I don't use JMH, because testing system for my problem uses simple one-time time measures). And before it captures start time, it sorts the array by natural order using built-in Arrays.sort
function.
As you could notice, measured time doesn't include the time the array gets sorted. Also function findDistForIth
's behaviour does not depend on whether input array is sorted or not(it mostly goes to third else branch). But if I comment out line with Arrays.sort
I get significantly faster execution: instead of roughly 7.3 seconds, it takes roughly 1.6 seconds. More that 4 times faster!
I don't understand what's going on.
I thought maybe it is gc that's messing up here, I tried to increase memory I give to jvm to 2gb(-Xmx2048M -Xms2048M). Didn't help.
I tried to pass explicit comparator to Arrays.sort
as second argument(Comparator.comparingInt(e -> e.value)
) and deimplementing Comparable
interface on Elem
class. Didn't help.
I launched the profiler(Intellij Profiler)
With Arrays.sort included:
With Arrays.sort excluded:
But it didn't give me much information...
I tried building it directly to .jar and launching via java cmd(before i did it via intellij). It also didn't help.
Do anybody know what's goind on?
This problem also replicates in online compiler: https://onlinegdb.com/MPyNIknB8T