Waiting for an "idle" is a poor way to do this.
Use termios
to set raw mode with VTIME
of 0 and VMIN
of 1. This will allow the userspace app to get control as soon as a single byte arrives. See:
- How to read serial with interrupt serial?
- How do I use termios.h to configure a serial port to pass raw bytes?
- How to open a tty device in noncanonical mode on Linux using .NET Core
But, you need a "protocol" of sorts, so you can know how much to read to get a complete packet. You prefix all data with a struct that has (e.g.) A type and a payload length. Then, you send "payload length" bytes. The receiver gets/reads that fixed length struct and then reads the payload which is "payload length" bytes long. This struct is always sent (in both directions).
See my answer: thread function doesn't terminate until Enter is pressed for a working example.
What you have/need is similar to doing socket programming using a stream socket except that the lower level is the UART rather than an actual socket.
My example code uses sockets, but if you change the low level to open your uart in raw mode (as above), it will be very similar.
UPDATE:
How quickly after the frame finished would i have the data at the application level? When I try to read my random length frames currently reading in 512 byte chunks, it will sometimes read all the frame in one go, other times it reads the frame broken up into chunks. –
Engo
In my link, in the last code block, there is an xrecv
function. It shows how to read partial data that comes in chunks.
That is what you'll need to do.
Things missing from your post:
You didn't post which imx8
board/configuration you have. And, which SIM card you have (the protocols are card specific).
And, you didn't post your other code [or any code] that drives the device and illustrates the problem.
How much time must pass without receiving a byte before the [uart] device is "idle"? That is, (e.g.) the device sends 100 bytes and is then finished. How many byte times does one wait before considering the device to be "idle"?
What speed is the UART running at?
A thorough description of the device, its capabilities, and how you intend to use it.
A uart device doesn't have an "idle" interrupt. From some imx8
docs, the DMA device may have an "idle" interrupt and the uart can be driven by the DMA controller.
But, I looked at some of the linux kernel imx8 device drivers, and, AFAICT, the idle interrupt isn't supported.
I need to read everything in one go and get this data within a few hundred microseconds.
Based on the scheduling granularity, it may not be possible to guarantee that a process runs in a given amount of time.
It is possible to help this a bit. You can change the process to use the R/T scheduler (e.g. SCHED_FIFO
). Also, you can use sched_setaffinity
to lock the process to a given CPU core. There is a corresponding call to lock IRQ interrupts to a given CPU core.
I assume that the SIM card acts like a [passive] device (like a disk). That is, you send it a command, and it sends back a response or does a transfer.
Based on what command you give it, you should know how many bytes it will send back. Or, it should tell you how many optional bytes it will send (similar to the struct
in my link).
The method you've described (e.g.) wait for idle, then "race" to get/process the data [for which you don't know the length] is fraught with problems.
Even if you could get it to work, it will be unreliable. At some point, system activity will be just high enough to delay wakeup of your process and you'll miss the window.
If you're reading data, why must you process the data within a fixed period of time (e.g. 100 us)? What happens if you don't? Does the device catch fire?
Without more specific information, there are probably other ways to do this.
I've programmed such systems before that relied on data races. They were unreliable. Either missing data. Or, for some motor control applications, device lockup. The remedy was to redesign things so that there was some positive/definitive way to communicate that was tolerant of delays.
Otherwise, I think you've "fallen in love" with "idle interrupt" idea, making this an XY problem: https://meta.stackexchange.com/questions/66377/what-is-the-xy-problem