I have numerical data in arrays of shape,
input_array = 14674 x 4
output_array = 13734 x 4
reshaping for LSTM (batch, timesteps, features) gives
input_array= (14574, 100, 4)
output_array = (13634, 100, 4)
Now I would like to build a Many to Many LSTM architecture for this given data, should I use encoder-decorder or synced sequence input and output architecture
using following model but it works on when input and outputs are same
import tenowingsorflow
from tensorflow.keras.metrics import Recall, Precision
from tensorflow.keras.layers import Conv1D, Dense, MaxPooling1D, Flatten
opt = tensorflow.keras.optimizers.Adam(learning_rate=0.001)
model_enc_dec_cnn = Sequential()
model_enc_dec_cnn.add(Conv1D(filters=64, kernel_size=9, activation='relu', input_shape=(100, 4)))
model_enc_dec_cnn.add(Conv1D(filters=64, kernel_size=11, activation='relu'))
model_enc_dec_cnn.add(MaxPooling1D(pool_size=2))
model_enc_dec_cnn.add(Flatten())
model_enc_dec_cnn.add(RepeatVector(100))
model_enc_dec_cnn.add(LSTM(100, activation='relu', return_sequences=True))
model_enc_dec_cnn.add(TimeDistributed(Dense(4)))
model_enc_dec_cnn.compile( optimizer=opt, loss='mse', metrics=['accuracy'])
history = model_enc_dec_cnn.fit(X,y, epochs=3, batch_size=64, )