First of all, I just want to clarify that I'm a beginner with AI and I've never used TensorFlow.
So basically I want to make an AI that can predict the Critic_Score based on 13 features and this is the way I implemented it:
inputs = tf.keras.Input(shape=(13,))
x = tf.keras.layers.Dense(64, activation='relu')(inputs)
x = tf.keras.layers.Dense(64, activation='relu')(x)
outputs = tf.keras.layers.Dense(1, activation='sigmoid')(x)
model = tf.keras.Model(inputs, outputs)
model.compile(
optimizer='adam',
loss= tf.keras.losses.MeanSquaredError(),
metrics=[tf.keras.metrics.AUC(name='auc')]
)
batch_size = 32
epochs = 30
history = model.fit(
X_train,
y_train,
validation_split=0.2,
batch_size = batch_size,
epochs = epochs,
callbacks=[tf.keras.callbacks.ReduceLROnPlateau()],
verbose=0,
)
deepLearningEv = model.evaluate(X_test, y_test)
prediction = model.predict(X_test)
And all my predictions are 1, what am I doing wrong?