I want to group animals based on consecutive months they were found within the same burrow, but also split up those groups if the months were not consecutive.
#Input Data
burrow.data <- read.csv
Animal Burrow Date
1 027 B0961 2022-03-01
2 027 B0961 2022-04-26
3 033 1920 2021-11-02
4 033 1955 2022-03-29
5 033 1955 2022-04-26
6 063 B0540 2021-04-21
7 063 B0540 2022-01-04
8 063 B0540 2022-03-01
9 101 B0021 2020-11-23
10 101 B0021 2020-12-23
11 101 B0021 2021-11-04
12 101 B0021 2022-01-06
13 101 B0021 2022-02-04
14 101 B0021 2022-03-03
#Expected Output
Animal Burrow grp Date.Start Date.End
1 033 1920 1 2021-11-02 2021-11-02
2 033 1955 1 2022-03-29 2022-04-26
3 101 B0021 1 2020-11-23 2020-12-23
4 101 B0021 2 2022-01-06 2020-03-03
5 063 B0540 1 2021-04-21 2022-03-01
6 027 B0961 1 2022-03-01 2022-04-26
I used code from another post: Group consecutive dates in R
And wrote:
burrow.input <- burrow.data[order(burrow.data$Date),]
burrow.input$grp <- ave(as.integer(burrow.input$Date), burrow.input[-4], FUN = function(z) cumsum(c(TRUE, diff(z)>1)))
burrow.input
out <- aggregate(Date ~ Animal + Burrow + grp, data = burrow.input, FUN = function(z) setNames(range(z), c("Start", "End")))
out <- do.call(data.frame,out)
out[,4:5] <- lapply(out[,4:5], as.Date, origin = "1970-01-01")
out
The code keeps grouping 101 into a single group instead of two groups broken up by a date gap (See below). How can I fix this?
Animal Burrow grp Date.Start Date.End
1 033 1920 1 2021-11-02 2021-11-02
2 033 1955 1 2022-03-29 2022-04-26
3 101 B0021 1 2020-11-23 2022-03-03
4 063 B0540 1 2021-04-21 2022-03-01
5 027 B0961 1 2022-03-01 2022-04-26