I have a script that uses a lot of numpy and numpy.linalg functions and after some reaserch it tourned out that supposedly they automaticaly use multithreading. Altought that, my htop display always shows just one thread being used to run my script.
I am new to multithreading and I don´t quite now how to set up it correctly.
I am mostly making use of numpy.linalg.svd
Here is the output of numpy.show_config()
openblas64__info:
libraries = ['openblas64_', 'openblas64_']
library_dirs = ['/usr/local/lib']
language = c
define_macros = [('HAVE_CBLAS', None), ('BLAS_SYMBOL_SUFFIX', '64_'), ('HAVE_BLAS_ILP64', None)]
runtime_library_dirs = ['/usr/local/lib']
blas_ilp64_opt_info:
libraries = ['openblas64_', 'openblas64_']
library_dirs = ['/usr/local/lib']
language = c
define_macros = [('HAVE_CBLAS', None), ('BLAS_SYMBOL_SUFFIX', '64_'), ('HAVE_BLAS_ILP64', None)]
runtime_library_dirs = ['/usr/local/lib']
openblas64__lapack_info:
libraries = ['openblas64_', 'openblas64_']
library_dirs = ['/usr/local/lib']
language = c
define_macros = [('HAVE_CBLAS', None), ('BLAS_SYMBOL_SUFFIX', '64_'), ('HAVE_BLAS_ILP64', None), ('HAVE_LAPACKE', None)]
runtime_library_dirs = ['/usr/local/lib']
lapack_ilp64_opt_info:
libraries = ['openblas64_', 'openblas64_']
library_dirs = ['/usr/local/lib']
language = c
define_macros = [('HAVE_CBLAS', None), ('BLAS_SYMBOL_SUFFIX', '64_'), ('HAVE_BLAS_ILP64', None), ('HAVE_LAPACKE', None)]
runtime_library_dirs = ['/usr/local/lib']
Supported SIMD extensions in this NumPy install:
baseline = SSE,SSE2,SSE3
found = SSSE3,SSE41,POPCNT,SSE42,AVX,F16C,FMA3,AVX2
not found = AVX512F,AVX512CD,AVX512_KNL,AVX512_KNM,AVX512_SKX,AVX512_CLX,AVX512_CNL,AVX512_ICL
MRE
import numpy as np
import tensorly as ty
tensor = np.random.rand(32,32,32,32)
unfolding = ty.unfold(tensor,0)
unfolding = unfolding @ unfolding.transpose()
U,S,_ = np.linalg.svd(unfolding)
Update
As suggested in the accepted answer, rebuilding numpy with MKL solved the issue.