You fit a complex model: zero-inflated negative binomial model with random effects.
What you observe has little to do with the model specification. Let's show this by fitting a simpler model: Poisson with fixed effects only.
library("glmmTMB")
library("ggeffects")
m <- glmmTMB(
count ~ spp + mined,
family = poisson,
data = Salamanders
)
ggemmeans(m, terms = "spp")
#> # Predicted counts of count
#>
#> spp | Predicted | 95% CI
#> --------------------------------
#> GP | 0.73 | [0.59, 0.89]
#> PR | 0.18 | [0.12, 0.27]
#> DM | 0.91 | [0.76, 1.10]
#> EC-A | 0.34 | [0.25, 0.45]
#> EC-L | 1.35 | [1.15, 1.59]
#> DES-L | 1.43 | [1.22, 1.68]
#> DF | 0.79 | [0.64, 0.96]
ggeffect(m, terms = "spp")
#> # Predicted counts of count
#>
#> spp | Predicted | 95% CI
#> --------------------------------
#> GP | 0.76 | [0.62, 0.93]
#> PR | 0.19 | [0.13, 0.28]
#> DM | 0.96 | [0.79, 1.15]
#> EC-A | 0.35 | [0.26, 0.47]
#> EC-L | 1.41 | [1.20, 1.66]
#> DES-L | 1.50 | [1.28, 1.75]
#> DF | 0.82 | [0.67, 1.00]
The documentation explains that internally ggemmeans()
calls emmeans::emmeans()
while ggeffect()
calls effects::Effect()
.
Both emmeans and effects compute marginal effects but they make a different (default) choice how to marginalize out (ie. average over) mined in order to get the effect of spp.
mined is a categorical variable with two levels: "yes" and "no". The crucial bit is that the two levels are not balanced: there are slightly more "no"s than "yes"s.
xtabs(~ mined + spp, data = Salamanders)
#> spp
#> mined GP PR DM EC-A EC-L DES-L DF
#> yes 44 44 44 44 44 44 44
#> no 48 48 48 48 48 48 48
Intuitively, this means that the weighted average over mined [think of (44 × yes + 48 × no) / 92] is not the same as the simple average over mined [think of (yes + no) / 2].
Let's check the intuition by specifying how to marginalize out mined when we call emmeans::emmeans()
directly.
# mean (default)
emmeans::emmeans(m, "spp", type = "response", weights = "equal")
#> spp rate SE df lower.CL upper.CL
#> GP 0.726 0.0767 636 0.590 0.893
#> PR 0.181 0.0358 636 0.123 0.267
#> DM 0.914 0.0879 636 0.757 1.104
#> EC-A 0.336 0.0497 636 0.251 0.449
#> EC-L 1.351 0.1120 636 1.148 1.590
#> DES-L 1.432 0.1163 636 1.221 1.679
#> DF 0.786 0.0804 636 0.643 0.961
#>
#> Results are averaged over the levels of: mined
#> Confidence level used: 0.95
#> Intervals are back-transformed from the log scale
# weighted mean
emmeans::emmeans(m, "spp", type = "response", weights = "proportional")
#> spp rate SE df lower.CL upper.CL
#> GP 0.759 0.0794 636 0.618 0.932
#> PR 0.190 0.0373 636 0.129 0.279
#> DM 0.955 0.0909 636 0.793 1.152
#> EC-A 0.351 0.0517 636 0.263 0.469
#> EC-L 1.412 0.1153 636 1.203 1.658
#> DES-L 1.496 0.1196 636 1.279 1.751
#> DF 0.822 0.0832 636 0.674 1.003
#>
#> Results are averaged over the levels of: mined
#> Confidence level used: 0.95
#> Intervals are back-transformed from the log scale
The second option returns the marginal effects computed with ggeffects::ggeffect
.
Update
@Daniel points out that ggeffects
accepts the weights
argument and will pass it to emmeans
. This way you can keep using ggeffects
and still control how predictions are averaged to compute marginal effects.
Try it out for yourself with:
ggemmeans(m, terms="spp", weights = "proportional")
ggemmeans(m, terms="spp", weights = "equal")