Please reconsider the need for solving such a HUGE system unless your system is very sparse.
Indeed, this is barely possible to store the input/output on a PC storage device: the input dense matrix takes 8 TB with double-precision values and the output will certainly also takes few TB not to mention a temporary data storage is needed to compute the result (at least 8 TB for a dense matrix). Sparse matrices can help a lot if your input matrix is almost full of zeros but you need the matrix to contain >99.95% of zeros so to store it in your RAM.
Furthermore, the time complexity of solving a system is O(n m min(n,m))
so O(n^3)
in your case (see: this post). This means a several billion billions operations. A basic mainstream processor do not exceed 0.5 TFlops. In fact, my relatively good i5-9600KF reach 0.3 TFlops in the LINPACK computationally intensive benchmark. This means the computation will certainly take a month to compute assuming is is bounded only by the speed of a mainstream processor. Actually, solving a large system of equations is known to be memory bound so it will be much slower in practice because modern RAM are a bottleneck in modern computers (see: memory wall). So for a mainstream PC, this should take from from several months to a year assuming the computation can be done in your RAM which is not possible as said before for a dense system. Since high-end SSD are about an order of magnitude slower than the RAM of a good PC, you should expect the computation to take several years. Not to mention a 20 TB high-end SSD is very expensive and it might be a good idea to consider power outages and OS failure for such a long computational time... Again, sparse matrices can help a lot, but note that solving sparse systems is known to be significantly slower than dense one unless the number of zeros is pretty small.
Such systems are solved on supercomputers (or at least large computing clusters), not regular PCs. This requires to use distributed computing and tools likes MPI and distributed linear solvers. A whole field of research is working on this topic to make them efficient on large scale systems.
Note that computing approximations can be faster, but one should solve the space problem in the first place...