Consider I have a linear mixed model with two continuous variables and use contrast coding for two factors with each two categories respectively (A,B). A random effect is optional.
contrasts(data$fac1) <- c(-.5,.5)
contrasts(data$fac2) <- c(-.5,.5)
model<-lme(Y~x1+x2+x1:fac1+x2:fac1+x1:fac2+x2:fac2+fac1+fac2+fac1:fac2, random=~1|group,data)
then the output will give me the main effects for x1 and x2 and the difference between slopes for fac1 and fac2.
But how can I calculate individual p-values for say the slope of x1 fac1=="A" and fac2=="B" ?
Is there an R package or do I have to calculate them manually ?
And if yes how? -following calls to vcov()
adding up respective matrix entries and call to pt()
(which df to use)?
Thanks!