I have this data, seen below:
## X ID DOB sector meters Oct Res_FROM Res_TO Exp_FROM Exp_TO
## 1 1 20100 8/24/1979 H38 6400 W 8/15/1979 5/15/1991 8/24/1979 12/31/1988
## 2 2 20101 5/5/1980 B01 1600 NW 5/15/1980 4/15/1991 5/15/1980 12/31/1988
## 3 3 20102 3/17/1979 H04 1600 SW 6/15/1972 8/15/1979 3/17/1979 8/15/1979
## 4 4 20103 11/30/1981 B09 3200 NE 1/15/1982 1/15/1984 1/15/1982 1/15/1984
## 5 5 20103 11/30/1981 B37 8000 N 1/15/1984 4/15/1986 1/15/1984 4/15/1986
## 6 6 20104 9/1/1978 B09 3200 NE 1/15/1982 1/15/1984 1/15/1982 1/15/1984
## Exps_Grp Yr1952 Yr1953 Yr1954 Yr1955 Yr1956 Yr1957 Yr1958 Yr1959 Yr1960
## 1 NA NA NA NA NA NA NA NA NA NA
## 2 NA NA NA NA NA NA NA NA NA NA
## 3 NA NA NA NA NA NA NA NA NA NA
## 4 NA NA NA NA NA NA NA NA NA NA
## 5 NA NA NA NA NA NA NA NA NA NA
## 6 NA NA NA NA NA NA NA NA NA NA
## Yr1961 Yr1962 Yr1963 Yr1964 Yr1965 Yr1966 Yr1967 Yr1968 Yr1969 Yr1970 Yr1971
## 1 NA NA NA NA NA NA NA NA NA NA NA
## 2 NA NA NA NA NA NA NA NA NA NA NA
## 3 NA NA NA NA NA NA NA NA NA NA NA
## 4 NA NA NA NA NA NA NA NA NA NA NA
## 5 NA NA NA NA NA NA NA NA NA NA NA
## 6 NA NA NA NA NA NA NA NA NA NA NA
## Yr1972 Yr1973 Yr1974 Yr1975 Yr1976 Yr1977 Yr1978 Yr1979 Yr1980 Yr1981
## 1 NA NA NA NA NA NA NA 1.082616 0.7834218 0.7834218
## 2 NA NA NA NA NA NA NA NA 0.6825884 1.0937646
## 3 NA NA NA NA NA NA NA 4.673775 NA NA
## 4 NA NA NA NA NA NA NA NA NA NA
## 5 NA NA NA NA NA NA NA NA NA NA
## 6 NA NA NA NA NA NA NA NA NA NA
## Yr1982 Yr1983 Yr1984 Yr1985 Yr1986 Yr1987 Yr1988
## 1 0.7834218 0.7834218 0.7834218 0.7834218 0.7834218 0.7834218 0.1956091
## 2 1.0937646 1.0937646 1.0937646 1.0937646 1.0937646 1.0937646 0.2730972
## 3 NA NA NA NA NA NA NA
## 4 2.7934596 2.8975827 0.1041230 NA NA NA NA
## 5 NA NA 0.5662659 0.5890579 0.1416258 NA NA
## 6 2.7934596 2.8975827 0.1041230 NA NA NA NA
## Yrs_Exp arth_mean median cumulative age residence
## 1 9.3616438 0.7545599 0.7834218 7.545599 9 112
## 2 8.6356164 0.9568931 1.0937646 8.612038 8 103
## 3 0.4136986 4.6737751 4.6737751 4.673775 0 4
## 4 2.0000000 1.9317218 2.7934596 5.795165 2 24
## 5 2.2493151 0.4323165 0.5662659 1.296950 4 27
## 6 2.0000000 1.9317218 2.7934596 5.795165 5 24
There are separate sectors, with some repeated, as multiple IDs may be located in said sectors. The residence column is the residence time in months that a person lived in the sector. My actual data is 14,000+ rows. I would like to add together all of the values in the residence columns for each sector (100 total in my actual data) and then take the average value to produce an average residence value for each of the 100 sectors (thus 100 residence values). I'm not entirely sure how to accomplish this and was seeking some assistance. Reproducible data below:
structure(list(X = 1:10, ID = c(20100L, 20101L, 20102L, 20103L,
20103L, 20104L, 20104L, 20105L, 20105L, 20106L), DOB = c("8/24/1979",
"5/5/1980", "3/17/1979", "11/30/1981", "11/30/1981", "9/1/1978",
"9/1/1978", "12/3/1980", "12/3/1980", "4/25/1978"), sector = c("H38",
"B01", "H04", "B09", "B37", "B09", "B37", "B09", "B09", "B09"
), meters = c(6400L, 1600L, 1600L, 3200L, 8000L, 3200L, 8000L,
3200L, 3200L, 3200L), Oct = c("W", "NW", "SW", "NE", "N", "NE",
"N", "NE", "NE", "NE"), Res_FROM = c("8/15/1979", "5/15/1980",
"6/15/1972", "1/15/1982", "1/15/1984", "1/15/1982", "1/15/1984",
"12/15/1980", "8/15/1983", "4/15/1978"), Res_TO = c("5/15/1991",
"4/15/1991", "8/15/1979", "1/15/1984", "4/15/1986", "1/15/1984",
"4/15/1986", "8/15/1983", "3/15/1991", "8/15/1983"), Exp_FROM = c("8/24/1979",
"5/15/1980", "3/17/1979", "1/15/1982", "1/15/1984", "1/15/1982",
"1/15/1984", "12/15/1980", "8/15/1983", "4/25/1978"), Exp_TO = c("12/31/1988",
"12/31/1988", "8/15/1979", "1/15/1984", "4/15/1986", "1/15/1984",
"4/15/1986", "8/15/1983", "12/31/1988", "8/15/1983"), Exps_Grp = c(NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA), Yr1952 = c(NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA), Yr1953 = c(NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA), Yr1954 = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA
), Yr1955 = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA), Yr1956 = c(NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA), Yr1957 = c(NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA), Yr1958 = c(NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA), Yr1959 = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA
), Yr1960 = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA), Yr1961 = c(NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA), Yr1962 = c(NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA), Yr1963 = c(NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA), Yr1964 = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA
), Yr1965 = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA), Yr1966 = c(NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA), Yr1967 = c(NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA), Yr1968 = c(NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA), Yr1969 = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA
), Yr1970 = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA), Yr1971 = c(NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA), Yr1972 = c(NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA), Yr1973 = c(NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA), Yr1974 = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA
), Yr1975 = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA), Yr1976 = c(NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA), Yr1977 = c(NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA), Yr1978 = c(NA, NA, NA, NA, NA, NA, NA,
NA, NA, 14.76869627), Yr1979 = c(1.082616155, NA, 4.673775148,
NA, NA, NA, NA, NA, NA, 10.8434728), Yr1980 = c(0.783421772,
0.682588398, NA, NA, NA, NA, NA, 0.120085751, NA, 2.897582683
), Yr1981 = c(0.783421772, 1.093764595, NA, NA, NA, NA, NA, 2.897582683,
NA, 2.897582683), Yr1982 = c(0.783421772, 1.093764595, NA, 2.793459642,
NA, 2.793459642, NA, 2.897582683, NA, 2.897582683), Yr1983 = c(0.783421772,
1.093764595, NA, 2.897582683, NA, 2.897582683, NA, 1.805844233,
1.09173845, 1.805844233), Yr1984 = c(0.783421772, 1.093764595,
NA, 0.104123041, 0.566265934, 0.104123041, 0.566265934, NA, 2.897582683,
NA), Yr1985 = c(0.783421772, 1.093764595, NA, NA, 0.589057923,
NA, 0.589057923, NA, 2.897582683, NA), Yr1986 = c(0.783421772,
1.093764595, NA, NA, 0.141625765, NA, 0.141625765, NA, 2.897582683,
NA), Yr1987 = c(0.783421772, 1.093764595, NA, NA, NA, NA, NA,
NA, 2.897582683, NA), Yr1988 = c(0.1956091, 0.27309722, NA, NA,
NA, NA, NA, NA, 0.723484539, NA), Yrs_Exp = c(9.361643836, 8.635616438,
0.41369863, 2, 2.249315068, 2, 2.249315068, 2.665753425, 5.383561644,
5.309589041), arth_mean = c(0.754559943, 0.956893087, 4.673775148,
1.931721789, 0.432316541, 1.931721789, 0.432316541, 1.930273838,
2.234258954, 6.018460225), median = c(0.783421772, 1.093764595,
4.673775148, 2.793459642, 0.566265934, 2.793459642, 0.566265934,
2.351713458, 2.897582683, 2.897582683), cumulative = c(7.545599433,
8.612037782, 4.673775148, 5.795165366, 1.296949622, 5.795165366,
1.296949622, 7.72109535, 13.40555372, 36.11076135), age = c(9L,
8L, 0L, 2L, 4L, 5L, 7L, 2L, 8L, 5L), residence = c(112L, 103L,
4L, 24L, 27L, 24L, 27L, 32L, 64L, 63L)), class = "data.frame", row.names = c(NA,
-10L))