I transformed a variable (e.g. leaf_area) using a simple square transformation and then fitted to the following model containing an interaction:
fit <- lmer(leaf_area^2 ~genotype*soil_type + date_measurement + light + (1|repetition) + (1|y_position) + (1|x_position), data = dataset)
To obtain the emmeans averaged accross genotypes and soil type for each measurement date, I further use the following command:
fit.emm <- emmeans(fit, ~ genotype*soil_type + date_measurement, type = "response")
The emmeans are, nevertheless, averaged for the variable date_measurement. As represented in the following example, emmeans are averages of genotypes x, y and z in the soil MT and in the date of measurement 27.4, but the measurement dates actually occured on 21, 23, 28, 30 and 35 das.
genotype soil_type date_measurement emmean SE df lower.CL upper.CL
x MT 27.4 0.190 0.0174 126.0 0.155 0.224
y MT 27.4 0.220 0.0147 74.1 0.191 0.250
z MT 27.4 0.210 0.0157 108.6 0.179 0.241
When I fit the model without interaction between genotype and soil type and run the emmeans, the results are still averaged for the measurement dates.
fit <- lmer(leaf_area^2 ~genotype + soil_type + date_measurement + light + (1|repetition) + (1|y_position) + (1|x_position), data = dataset)
fit.emm <- emmeans(fit, ~ genotype + soil_type + date_measurement, type = "response")
My question is: how can I obtain the emmeans averaged accross genotype and soil but separated for each date of measurement?
Class of variables: date_measurement, light, x_position, y_position: numeric genotype and soil_type: factor
Thank you in advance.